The genetic correlation between the sexes in the expression of secondary sex traits in wild vertebrate populations has attracted very few previous empirical efforts of field researchers. In southern European populations of pied flycatchers, a sexually selected male ornament is also expressed by a proportion of females. Additive genetic variances in ornament size and expression, transmission mechanisms (autosomal vs Z-linkage) and maternal effects are examined by looking at patterns of familial resemblance across three generations. Size of the secondary sex trait has a genetic basis common to both sexes, with estimated heritability being 0.5 under an autosomal model of inheritance. Significant additive genetic variance in males was also confirmed through a crossfostering experiment. Heritability analyses were only partially consistent with previous molecular genetics evidence, as only two out of the three predictions supported Z-linkage and lack of significant mother-daughter resemblance could be due to small sample sizes caused by limited female trait expression. Therefore, the evidence was mixed as to the contribution of the Z chromosome and autosomal genes to trait size. The threshold heritability of trait expression in females was lower, around 0.3, supporting autosomal-based trait expression in females. Environmental (birth date) and parental effects on ornament size mediated by the mother's condition after accounting for maternal and paternal genetic influences are also highlighted. The genetic correlation between the sexes did not differ from one, indicating that selection on the character on either sex entails a correlated response in the opposite sex.