2020
DOI: 10.1051/e3sconf/202019702008
|View full text |Cite
|
Sign up to set email alerts
|

Passive solar systems for buildings: performance indicators analysis and guidelines for the design

Abstract: Data from the International Energy Agency confirm that in a zero-energy perspective the integration of solar systems in buildings is essential. The development of passive solar strategies has suffered the lack of standard performance indicators and design guidelines. The aim of this paper is to provide a critical analysis of the main passive solar design strategies based on their classification, performance evaluation and selection methods, with a focus on integrability. Climate and latitude affect the amount … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1

Citation Types

0
2
0
2

Year Published

2021
2021
2024
2024

Publication Types

Select...
4
1

Relationship

0
5

Authors

Journals

citations
Cited by 5 publications
(4 citation statements)
references
References 14 publications
0
2
0
2
Order By: Relevance
“…En cambio, las ganancias de las V2 de la Tabla 2, son de 75055 W mayor que las pérdidas de 57415 W, alcanzando una temperatura interior de confort de 21°C±0,5; temperatura similar a la dada por la ecuación de Szokolay (2014), aproximada a los resultados de Silva, Depaz y Alva (2016); Corrales y Villegas (2014); coincide con Monroy (2006:118), que para una vivienda de control medio con una temperatura exterior de 13,3 °C, que es de Huaraz, le corresponde 20,5° C. La V2 tiene un ahorro energético del 100%, mayor que los establecidos en estudios de otros contextos más frígidos que están entre el 25 al 85,6 % (Fosdick, 2016;Mazzocco et al, 2010;Saad y Araji, 2020;Cillari, Fantozzi, y Franco, 2021).…”
Section: Discussionunclassified
See 1 more Smart Citation
“…En cambio, las ganancias de las V2 de la Tabla 2, son de 75055 W mayor que las pérdidas de 57415 W, alcanzando una temperatura interior de confort de 21°C±0,5; temperatura similar a la dada por la ecuación de Szokolay (2014), aproximada a los resultados de Silva, Depaz y Alva (2016); Corrales y Villegas (2014); coincide con Monroy (2006:118), que para una vivienda de control medio con una temperatura exterior de 13,3 °C, que es de Huaraz, le corresponde 20,5° C. La V2 tiene un ahorro energético del 100%, mayor que los establecidos en estudios de otros contextos más frígidos que están entre el 25 al 85,6 % (Fosdick, 2016;Mazzocco et al, 2010;Saad y Araji, 2020;Cillari, Fantozzi, y Franco, 2021).…”
Section: Discussionunclassified
“…Se efectuaron investigaciones en diferentes países de latitudes altas, (Fosdick, 2016;Mazzocco et al 2020;Saad y Araji, 2020;Cillari, Fantozzi y Franco, 2021); las que concluyen que se puede reducir la demanda energética de edificaciones utilizando estrategias bioclimáticas, entre 20 al 85,6 %, cuando se usa una superficie envolvente con aislamiento térmico y orientación adecuada para la captación de la energía solar.…”
Section: Iniciounclassified
“…These are the outside building air temperature or exterior ambient temperature T ea (k) (this model considers the exterior ambient temperature different from the exterior building wall temperature T ex (k) since, in general, both are different, adding accuracy to the model) that influences by the wall thermal conduction and the opening of doors and/or windows, electrical power consumed by the building for heating/cooling P h/c (k) and irradiance I(k), or energy per unit area of global solar radiation incident on a horizontal surface of the building. It is calculated according to the position and orientation of the building, as well as its geographical location (latitude and longitude) [53]. Finally, the output vector y(k) coincides with the state vector (this facilitates the use of the state vector for controller design because all its coordinates can be measured [54]) and represents the evolution of the temperatures of each of the thermal nodes.…”
Section: Electric Space Heating/coolingmentioning
confidence: 99%
“…These are the outside building air temperature or exterior ambient temperature 𝑇 (𝑘) (this model considers the exterior ambient temperature different from the exterior building wall temperature 𝑇 (𝑘) since in general both are different; again, this adds accuracy to the model) that influences by the wall thermal conduction and the opening of doors and/or windows, electrical power consumed by the building for heating/cooling 𝑃 / (𝑘) and irradiance 𝐼(𝑘), or energy per unit area of global solar radiation incident on a horizontal surface of the building. It is calculated according to the position and orientation of the building, as well as its geographical location (latitude and longitude) [52]. Finally, the output vector 𝒚(𝑘) coincides with the state vector (this facilitates the use of the state vector for controller design because all its coordinates can be measured [53]) and represents the evolution of the temperatures of each of the thermal nodes.…”
Section: Electric Space Heating/coolingmentioning
confidence: 99%