İlk olarak Aralık 2019'da ortaya çıkan ve dünya çapında bir salgına neden olan Koronavirüs (COVID-19) hastalığı; akut solunum sendromu SARS-CoV-2'nin neden olduğu viral bir hastalık olarak tanımlanmaktadır. COVID-19 hastalığının tespiti için güncel olan rRT-PCR testi kullanılmaktadır. Bu testin uzun geri dönüş süresi, %15-20 civarında yanlış negatif oranları ve pahalı ekipmanları olması nedeniyle rutin kan incelemelerinin değerleri ile tespit yöntemi daha hızlı ve daha ucuz bir alternatif olarak değerlendirilebilmektedir. Bu çalışmada, rutin kan testlerinden Derin Sinir Ağları (DSA) kullanılarak COVID-19 tespit edilmeye çalışılmıştır. Kullanılan veri setinde sınıf dengesizliği olduğu için yeniden örnekleme yöntemleriyle sınıf dengesizliği giderilmiş ve kullanılan algoritmaların performansları değerlendirilmiştir. Yeniden örnekleme yapılırken SMOTE, ADASYN, Geometric SMOTE, Random Under-Sampler, Random OverSampler algoritmaları kullanılmıştır. Kurulan model sonunda 0,985 doğruluk değeri ve 0,99 F1-skoru ile en başarılı sonuç, Random OverSampler algoritması ile alınmıştır. Ayrıca yeni girilecek veriler için tahmin yapabilmek amacıyla, PyQt kullanılarak bir uygulama geliştirilmiştir ve kullanılan niteliklerin modele katkıları SHapley Additive Explanations (SHAP) tekniği ile belirlenmiş ve açıklanmıştır.