One of the most important causes of insulation system failure is the breakdown of the interface between two solid dielectrics; understanding the mechanisms governing this breakdown phenomenon is therefore critical. To that end, investigating and reviewing the practical limitations of the electrical breakdown strength of solid–solid interfaces present in insulating components is the primary objective of this work. The published literature from experimental and theoretical studies carried out in order to scrutinize the effects of the presence of solid–solid interfaces is investigated and discussed, considering macro, micro, and nano-scale characteristics. The reviewed literature suggests that solid–solid interfaces in accessories have non-uniform distributions of electrical fields within them in comparison to cables, where the distribution is mostly radial and symmetrical. Many agree that the elastic modulus (elasticity), radial/tangential pressure, surface smoothness/roughness, and dielectric strength of the ambient environment are the main parameters determining the tangential AC breakdown strength of solid–solid interfaces.