Knowledge regarding the steps and mechanisms related to the intra- and interchain cross-linking of collagen and elastin has evolved steadily during the past 30 years. Recently, effort has been directed at identifying the location and types of cross-links that are found in collagen and elastin. There are two major groups of cross-links: those initiated by the enzyme lysyl oxidase and those derived from nonenzymatically glycated lysine and hydroxylysine residues. The formation of enzymatic cross-links depends on specific enzymes, amino acid sequences, and quaternary structural arrangements. The cross-links that are derived nonenzymatically occur more adventitiously and are important to pathobiological processes. Considerable progress has been made in elucidating the pathways of synthesis for several of the enzymatically mediated cross-links, as well as possible mechanisms regulating the specificity of cross-linking. Although less is known about the chemistry of cross-links arising from nonenzymatically glycated residues, recent progress has also been made in understanding possible biosynthetic pathways and control mechanisms. This review focuses on such progress and hopes to underscore the biological importance of collagen and elastin cross-linking.