“…For k = 1 we present an alternative, more transparent argument. Given a > b, by(26) we haveV 1 (b) = E b ∞ {L(t)<L(τ + a ∧κ ξ r )} e −qt dL(t) = ∞ b e −qL −1 (y) 1 {y<L(τ + a )=a−b, y<L(κ ξ r )} dy = a−b 0 E b e −qL −1 (y) 1 {L −1 (y)<κ ξ r }dy Application of draw-down Parisian ruin results to a spectrally negative Lévy process reflected at its past supremumRecall the dividend process D defined in(5). Let the corresponding risk process with dividends deducted according to the barrier strategy with barrier level b be defined asY(t) := X(t) − D(t), t ≥ 0.For fixed b ∈ (0, ∞), if we choose the general draw-down function ξ such that ξ (z) := ξ b (z) = (z − b) ∨ 0, z ∈ (− ∞, ∞), then we have κ ξ r := inf{t > r:t − g ξ t > r}, where g ξ t := sup{0 ≤ s ≤ t : Y(s) ≥ 0}; i.e., κ ξ r = κ ξ b r degenerates to the classical Parisian ruin time for the risk process Y.…”