2022
DOI: 10.1002/nav.22050
|View full text |Cite
|
Sign up to set email alerts
|

Pareto‐scheduling with double‐weighted jobs to minimize the weighted number of tardy jobs and total weighted late work

Abstract: We consider the single‐machine Pareto‐scheduling problem to minimize the weighted number of tardy jobs and total weighted late work simultaneously. The problem is to find the set of all the Pareto‐optimal points, that is, the Pareto frontier, and their corresponding Pareto‐optimal schedules. We consider the corresponding weighted‐sum scheduling problem and primary‐secondary scheduling problems, being subproblems of the general Pareto‐scheduling problem. The NP‐hardness of the general problem follows directly f… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
13
0

Year Published

2022
2022
2024
2024

Publication Types

Select...
5

Relationship

1
4

Authors

Journals

citations
Cited by 6 publications
(16 citation statements)
references
References 58 publications
0
13
0
Order By: Relevance
“…Problem 1*pj=p,()djwj#()Uj,wjYj$$ {1}^{\ast }{\left|{p}_j=p,\left({d}_j{w}_j\right)\right|}^{\#}\left(\sum {U}_j,\sum {w}_j{Y}_j\right) $$ is solvable in O(nlogn)$$ O\left(n\log n\right) $$ time. Then problem 1pj=p#()Uj,Yj$$ 1{\left|{p}_j=p\right|}^{\#}\left(\sum {U}_j,\sum {Y}_j\right) $$ is also solvable in O(nlogn)$$ O\left(n\log n\right) $$ time, which improves the O()n2$$ O\left({n}^2\right) $$‐time solution in Guo et al (2022). Problem 1normalCO,pj(B)=p(B)#()fmax(A),wjfalse(Bfalse)Yjfalse(Bfalse)$$ 1{\left|\mathrm{CO},{p}_j^{(B)}={p}^{(B)}\right|}^{\#}\left({f}_{\mathrm{max}}^{(A)},\sum {w}_j^{(B)}{Y}_j^{(B)}\right) $$ is solvable in O()nAnB()qA+nB2$$ O\left({n}_A{n}_B\left({q}_A+{n}_B^2\right)\right) $$ time, which improves the O()...…”
Section: Discussionmentioning
confidence: 93%
See 4 more Smart Citations
“…Problem 1*pj=p,()djwj#()Uj,wjYj$$ {1}^{\ast }{\left|{p}_j=p,\left({d}_j{w}_j\right)\right|}^{\#}\left(\sum {U}_j,\sum {w}_j{Y}_j\right) $$ is solvable in O(nlogn)$$ O\left(n\log n\right) $$ time. Then problem 1pj=p#()Uj,Yj$$ 1{\left|{p}_j=p\right|}^{\#}\left(\sum {U}_j,\sum {Y}_j\right) $$ is also solvable in O(nlogn)$$ O\left(n\log n\right) $$ time, which improves the O()n2$$ O\left({n}^2\right) $$‐time solution in Guo et al (2022). Problem 1normalCO,pj(B)=p(B)#()fmax(A),wjfalse(Bfalse)Yjfalse(Bfalse)$$ 1{\left|\mathrm{CO},{p}_j^{(B)}={p}^{(B)}\right|}^{\#}\left({f}_{\mathrm{max}}^{(A)},\sum {w}_j^{(B)}{Y}_j^{(B)}\right) $$ is solvable in O()nAnB()qA+nB2$$ O\left({n}_A{n}_B\left({q}_A+{n}_B^2\right)\right) $$ time, which improves the O()...…”
Section: Discussionmentioning
confidence: 93%
“…Inspired by the two open problems 1pj=p#()wjUj,Yj$$ 1{\left|{p}_j=p\right|}^{\#}\left(\sum {w}_j{U}_j,\sum {Y}_j\right) $$ and 1pj=p#()wjUj,wjYj$$ 1{\left|{p}_j=p\right|}^{\#}\left(\sum {w}_j{U}_j,\sum {w}_j{Y}_j\right) $$ in Guo et al (2022), we present some italicNP$$ NP $$‐hardness results for two families of problems in this section.…”
Section: Italicnp$$ Np $$‐Hardness Resultsmentioning
confidence: 99%
See 3 more Smart Citations