2013 IEEE 4th Latin American Symposium on Circuits and Systems (LASCAS) 2013
DOI: 10.1109/lascas.2013.6518991
|View full text |Cite
|
Sign up to set email alerts
|

Parallel GPU-based implementation of high dimension Particle Swarm Optimizations

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
2
1

Citation Types

0
7
0
3

Year Published

2014
2014
2017
2017

Publication Types

Select...
4
3
1

Relationship

0
8

Authors

Journals

citations
Cited by 25 publications
(10 citation statements)
references
References 5 publications
0
7
0
3
Order By: Relevance
“…A Tabela 3 apresenta o speedup relativo à implementação serial e a versão estado-da-arte para 4 e 8 sub-enxames [3]. O melhor resultado obtido durante os experimentos foi o da topologia LG com mecanismos iterativo.…”
Section: Resultsunclassified
See 2 more Smart Citations
“…A Tabela 3 apresenta o speedup relativo à implementação serial e a versão estado-da-arte para 4 e 8 sub-enxames [3]. O melhor resultado obtido durante os experimentos foi o da topologia LG com mecanismos iterativo.…”
Section: Resultsunclassified
“…O melhor resultado obtido durante os experimentos foi o da topologia LG com mecanismos iterativo. O speedup médio obtido foi de 5 vezes em relação à versão estado-da-arte [3]. Pode-se perceber ainda que em alguns casos foi obtido speedup acima de 100 quando comparado com a implementação serial.…”
Section: Resultsunclassified
See 1 more Smart Citation
“…These particles use inertia, cognition, social learning and random decision-making to move inside the solution space and to bypass discontinuities. Compared to other global evolutionary algorithms, such as genetic algorithms and neural networks, PSO is highly parallelizable, and relatively simple to implement and control [24]. These features led us choose PSO for 4D RT inverse planning.…”
Section: Introductionmentioning
confidence: 99%
“…In this study, nonetheless, non-convexity is tackled by using a stochastic global optimization technique, which has been benchmarked in a variety of large-scale, non-convex, mathematical problems. Particle swarm optimization (PSO), a highly parallelizable stochastic global optimization technique, is our method of choice [9]- [11]. In addition, here, the swarm solution space and consequently computational complexity is reduced by a new strategy used to virtually increase the search history of each particle.…”
Section: Introductionmentioning
confidence: 99%