Ensuring noise immunity is one of the main tasks of radio engineering and telecommunication. The main task of signal receiving comes down to the best recovery of useful information from a signal that is destructed during propagation and received together with interference. Currently, the interference and noise control comes to the fore. Modern elements and methods of processing, related to intelligent systems, strengthen the role of the verification and recognition of targets. This makes noise control particularly relevant. The most-important quantitative indicator that characterizes the quality of the useful signal is the signal-to-noise ratio. Therefore, determining the noise parameters is very important. In the present paper, a signal model is used in the form of an additive mixture of useful signals and Gaussian noise. It is an ordinary model of a received signal in radio engineering and communications. It is shown that the phase portrait of this signal has the shape of an ellipse at the low noise level. For the first time, an expression of the width of the ellipse line is obtained, which is determined by the noise dispersion. Currently, in electroencephalography, diagnosis is based on the Fourier transform. But, many brain diseases are not detected by this method. Therefore, the search and use of other methods of signal processing is relevant.