2018
DOI: 10.1039/c8cp01976b
|View full text |Cite
|
Sign up to set email alerts
|

Oxide–organic heterostructures: a case study of charge transfer disturbance at a SnO2–copper phthalocyanine buried interface

Abstract: Reduced tin dioxide/copper phthalocyanine (SnOx/CuPc) heterojunctions recently gained much attention in hybrid electronics due to their defect structure, allowing tuning of the electronic properties at the interface towards particular needs. In this work, we focus on the creation and analysis of the interface between the oxide and organic layer. The inorganic/organic heterojunction was created by depositing CuPc on SnOx layers prepared with the rheotaxial growth and vacuum oxidation (RGVO) method. Exploiting s… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1
1

Citation Types

0
5
0
5

Year Published

2018
2018
2024
2024

Publication Types

Select...
8
1

Relationship

0
9

Authors

Journals

citations
Cited by 15 publications
(10 citation statements)
references
References 71 publications
0
5
0
5
Order By: Relevance
“…As a result, the interface dipole increases the photovoltage and increases the potential energy of the charge carriers for the surface catalytic reaction. Interestingly, the surface dipole induced by the chemical interaction; in other words, the replacement of hydroxyl groups with electron-withdrawing phosphonate groups strongly affects the surface [95][96][97]. And the phenyl moieties with various substituents change the higher electron-withdrawing abilities also increase the surface generated dipole [98,99] to change the barrier height at the interface (Figure 4b).…”
Section: Modulation Of Solid-solid Interface For Charge Transfer and mentioning
confidence: 99%
“…As a result, the interface dipole increases the photovoltage and increases the potential energy of the charge carriers for the surface catalytic reaction. Interestingly, the surface dipole induced by the chemical interaction; in other words, the replacement of hydroxyl groups with electron-withdrawing phosphonate groups strongly affects the surface [95][96][97]. And the phenyl moieties with various substituents change the higher electron-withdrawing abilities also increase the surface generated dipole [98,99] to change the barrier height at the interface (Figure 4b).…”
Section: Modulation Of Solid-solid Interface For Charge Transfer and mentioning
confidence: 99%
“…Авторы предполагают, что наблюдаемые достаточно высокие и различающиеся между собой значения работы выхода пленок СH 3 -PTTP-СH 3 на подложках ex situ Au и in situ Au являются следствием процессов физико-химического взаимодействия на границе пленки и подложек. Среди таких процессов, которые непосредственно влияют на взаимное расположение уровней E vac и E F , часто выделяют пиннинг (pinning) E F [4,35], диффузию молекул из газовой фазы и диффузию атомов металлов в органическую пленку [26,37,38].…”
Section: результаты и обсуждениеunclassified
“…Раскрытие пятичленного цикла в молекуле фталида требует определенной энергии активации, несколько десятых долей eV [7]. Воздействие на электронную систему тонкой пленки сопряженных молекул можно обеспечить путем переноса электронного заряда на границе органического материала и твердотельной поверхности [8][9][10] или путем введения электроактивных заместителей в молекулу [11,12].…”
Section: Introductionunclassified