How arsenic (As) is transported in phloem remains unknown. To help answer this question, we quantified the chemical species of As in phloem and xylem exudates of castor bean (Ricinus communis) exposed to arsenate [As(V)], arsenite [As(III)], monomethylarsonic acid [MMA(V)], or dimethylarsinic acid. In the As(V)-and As(III)-exposed plants, As(V) was the main species in xylem exudate (55%-83%) whereas As(III) predominated in phloem exudate (70%-94%). The ratio of As concentrations in phloem to xylem exudate varied from 0.7 to 3.9. Analyses of phloem exudate using high-resolution inductively coupled plasma-mass spectrometry and accurate mass electrospray mass spectrometry coupled to high-performance liquid chromatography identified high concentrations of reduced and oxidized glutathione and some oxidized phytochelatin, but no As(III)-thiol complexes. It is thought that As(III)-thiol complexes would not be stable in the alkaline conditions of phloem sap. Small concentrations of oxidized glutathione and oxidized phytochelatin were found in xylem exudate, where there was also no evidence of As(III)-thiol complexes. MMA(V) was partially reduced to MMA(III) in roots, but only MMA(V) was found in xylem and phloem exudate. Despite the smallest uptake among the four As species supplied to plants, dimethylarsinic acid was most efficiently transported in both xylem and phloem, and its phloem concentration was 3.2 times that in xylem. Our results show that free inorganic As, mainly As(III), was transported in the phloem of castor bean exposed to either As(V) or As(III), and that methylated As species were more mobile than inorganic As in the phloem.Arsenic (As) is an environmental and food chain contaminant that has attracted much attention in recent years. Soil contamination with As may lead to phytotoxicity and reduced crop yield (Panaullah et al., 2009). Food crops are also an important source of inorganic As, a class-one carcinogen, in human dietary intake, and there is a need to decrease the exposure to this toxin (European Food Safety Authority, 2009). Paddy rice (Oryza sativa) is particularly efficient in As accumulation, which poses a potential risk to the population based on a rice diet Zhao et al., 2010a). Other terrestrial food crops generally do not accumulate as much As as paddy rice; however, where soils are contaminated, relatively high concentrations of As in wheat (Triticum aestivum) grain have been reported Zhao et al., 2010b). On the other hand, some fern species in the Pteridaceae family are able to tolerate and hyperaccumulate As in the aboveground part to .1,000 mg kg 21 dry weight (e.g. Ma et al., 2001;Zhao et al., 2002); these plants offer the possibility for remediation of Ascontaminated soil or water (Salido et al., 2003;Huang et al., 2004). A better understanding of As uptake and long-distance transport, metabolism, and detoxification is needed for developing strategies for mitigating As contamination, through either decreased As accumulation in food crops or enhanced As accumulation for phytoremedi...