The offshore wind sector is moving into deep waters and using floating platforms to harness the higher wind speeds in exposed locations. There are various floating platform types currently in development, but semi-submersibles are considered the most prominent early movers. Such floaters need to be towed to and from wind farm locations for installation, special cases of repair and decommissioning. As with any other offshore activity, metocean limits exist for towing operations which can impact the development of a wind farm. It is important to calculate the motion and loads of the platform before commencing the towing operations and to check whether they exceed the defined limits to enable safe execution. In this paper, two approaches using two different numerical tools to predict the motion of a fully assembled floating wind platform under tow are presented and compared. A potential flow-based method derived from a low forward speed approach and a hybrid approach combining potential flow and Morison equation methods are investigated, and the numerical predictions are compared and validated against experimental results. Both methods demonstrate accurate predictions, depending on the wave condition and towing speed, albeit differing in execution time and the simplicity of the simulation setup. The first method was found to provide good predictions of the motion in low-speed (0.514–1.543 m/s) towing conditions. The second method provides better results for all the towing speeds and wave heights. As the wave height and towing speed increase, deviations from experiments were observed, signifying non-linear phenomena that are difficult to analyse using the mentioned potential-flow-based methods.