2021
DOI: 10.48550/arxiv.2103.07798
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

ORStereo: Occlusion-Aware Recurrent Stereo Matching for 4K-Resolution Images

Abstract: Stereo reconstruction models trained on small images do not generalize well to high-resolution data. Training a model on high-resolution image size faces difficulties of data availability and is often infeasible due to limited computing resources. In this work, we present the Occlusion-aware Recurrent binocular Stereo matching (ORStereo), which deals with these issues by only training on available low disparity range stereo images. ORStereo generalizes to unseen highresolution images with large disparity range… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 38 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?