2020
DOI: 10.1364/oe.389980
|View full text |Cite
|
Sign up to set email alerts
|

Optothermal generation, trapping, and manipulation of microbubbles

Abstract: The most common approach to optically generate and manipulate bubbles in liquids involves temperature gradients induced by CW lasers. In this work, we present a method to accomplish both the generation of microbubbles and their 3D manipulation in ethanol through optothermal forces. These forces are triggered by light absorption from a nanosecond pulsed laser (λ = 532 nm) at silver nanoparticles photodeposited at the distal end of a multimode optical fiber. Light absorbed from each laser pulse quickly heats up … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1
1

Citation Types

0
27
0

Year Published

2020
2020
2023
2023

Publication Types

Select...
6

Relationship

1
5

Authors

Journals

citations
Cited by 25 publications
(44 citation statements)
references
References 49 publications
0
27
0
Order By: Relevance
“…Experimental results show the trapping and manipulation of microbubbles, previously generated, using optically-induced temperature gradients caused by light absorption in ethanol [20]. Microbubbles are generated in ethanol by thermocavitation, i.e., the explosive phase transition from liquid to vapor around its critical-point (243°C) [25] after light from a pulsed laser is absorbed at AgNPs deposited at the end of an optical fiber.…”
Section: Discussionmentioning
confidence: 93%
See 4 more Smart Citations
“…Experimental results show the trapping and manipulation of microbubbles, previously generated, using optically-induced temperature gradients caused by light absorption in ethanol [20]. Microbubbles are generated in ethanol by thermocavitation, i.e., the explosive phase transition from liquid to vapor around its critical-point (243°C) [25] after light from a pulsed laser is absorbed at AgNPs deposited at the end of an optical fiber.…”
Section: Discussionmentioning
confidence: 93%
“…By heat transfer, the surrounding liquid is heated up well beyond its boiling temperature and eventually, evaporates explosively creating a microbubble that is expelled from the fiber end [20]. The longer the pulsed laser is on, the larger the bubble's diameter [20]. In particular, the radius reached by the microbubble was approximately R ∼ 42 µm for all the cases shown in Figure 2.…”
Section: Methodsmentioning
confidence: 95%
See 3 more Smart Citations