2018
DOI: 10.1182/blood-2018-99-114136
|View full text |Cite
|
Sign up to set email alerts
|

Optimized Beta-Globin Expression and Enucleation from Induced Red Blood Cells for In Vitro Modeling of Sickle Cell Disease

Abstract: Human induced pluripotent stem cells (hiPSCs) hold remarkable capacity for disease modeling and the development of novel therapeutic treatments for sickle cell disease (SCD). hiPSCs can theoretically produce all cell types including induced red blood cells (iRBCs). Sickle cell patients, in particular, could benefit from autologous, engineered red blood cells (RBCs). Many patients possess rare Rh phenotypes, are allo-sensitized to blood products and are at risk of iron overload from recurrent transfusions. Ther… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
1
0

Year Published

2018
2018
2018
2018

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
(1 citation statement)
references
References 0 publications
0
1
0
Order By: Relevance
“…In vitro experiments with human iPSCs (hiPSCs) have been hampered by their inability to demonstrate terminal erythroid differentiation with mature, enucleated, β-globin- expressing erythroid cells. Utilizing optimized cell processing techniques, Rosanwo et al ( 2017 ) have generated conditionally immortalized hematopoietic progenitors from SCD patients, capable of robust terminal differentiation. When transplanted into immunodeficient mice, these lines underwent globin switching with a 27% induction of β- globin expression.…”
Section: Treatment Strategiesmentioning
confidence: 99%
“…In vitro experiments with human iPSCs (hiPSCs) have been hampered by their inability to demonstrate terminal erythroid differentiation with mature, enucleated, β-globin- expressing erythroid cells. Utilizing optimized cell processing techniques, Rosanwo et al ( 2017 ) have generated conditionally immortalized hematopoietic progenitors from SCD patients, capable of robust terminal differentiation. When transplanted into immunodeficient mice, these lines underwent globin switching with a 27% induction of β- globin expression.…”
Section: Treatment Strategiesmentioning
confidence: 99%