In this academic position paper, we propose the 12 Principles of a novel and more sustainable approach to hydrometallurgy that we call “circular hydrometallurgy.” The paper intends to set a basis for identifying future areas of research in the field of hydrometallurgy, while providing a “sustainability” benchmark for assessing existing processes and technological developments. Circular hydrometallurgy refers to the designing of energy-efficient and resource-efficient flowsheets or unit processes that consume the minimum quantities of reagents and result in minimum waste. The application of a circular approach involves new ways of thinking about how hydrometallurgy is applied for both primary and secondary resources. In either case, the emphasis must be on the regeneration and reuse of every reagent in the process. This refers not only to the acids and bases employed for leaching or pH control, but also any reducing agents, oxidizing agents, and other auxiliary reagents. Likewise, the consumption of water and energy must be reduced to an absolute minimum. To consolidate the concept of circular hydrometallurgical flowsheets, we present the 12 Principles that will boost sustainability: (1) regenerate reagents, (2) close water loops, (3) prevent waste, (4) maximize mass, energy, space, and time efficiency, (5) integrate materials and energy flows, (6) safely dispose of potentially harmful elements, (7) decrease activation energy, (8) electrify processes wherever possible, (9) use benign chemicals, (10) reduce chemical diversity, (11) implement real-time analysis and digital process control, and (12) combine circular hydrometallurgy with zero-waste mining. Although we realize that the choice of these principles is somewhat arbitrary and that other principles could be imagined or some principles could be merged, we are nevertheless convinced that the present framework of these 12 Principles, as put forward in this position paper, provides a powerful tool to show the direction of future research and innovation in hydrometallurgy, both in industry and in academia.
Graphical Abstract