In order to optimize and evaluate the influence of nitrogen, phosphorus, and inoculum concentrations on the biodegradation of hydrocarbon contaminated effluents, experiments based on central composite design (CCD) method were carried out for 3 days, employing C1 mixed culture and intermittent aeration. The independent variables were nitrogen concentration (X 1 ), phosphorus concentration (X 2 ), and inoculum concentration (X 3 ) and the removal of total petroleum hydrocarbons (TPH) was the dependent variable. The optimized nutrients ratio (C:N:P = 100:20:2.7) and inoculum concentration (1.32 g/ l) provided TPH removal of 71.8% after processing for three days. Analysis using gas chromatography identified five hydrocarbons classes: paraffins, isoparaffins, olefins, naphthenics, and aromatics. The naphthenic compounds did not degrade as readily as the other hydrocarbons that were identified. The following degradation percentages were obtained: 87.1% for the paraffins, 77.7% for the isoparaffins, 78.6% for the olefins, 38.4% for the naphthenics, and 71.7% for the aromatics.