2017
DOI: 10.1002/smll.201603155
|View full text |Cite
|
Sign up to set email alerts
|

Optimal Reactivity and Improved Self‐Healing Capability of Structurally Dynamic Polymers Grafted on Janus Nanoparticles Governed by Chain Stiffness and Spatial Organization

Abstract: Structurally dynamic polymers are recognized as a key potential to revolutionize technologies ranging from design of self-healing materials to numerous biomedical applications. Despite intense research in this area, optimizing reactivity and thereby improving self-healing ability at the most fundamental level pose urgent issue for wider applications of such emerging materials. Here, the authors report the first mechanistic investigation of the fundamental principle for the dependence of reactivity and self-hea… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1
1

Citation Types

0
35
0
1

Year Published

2018
2018
2022
2022

Publication Types

Select...
9

Relationship

2
7

Authors

Journals

citations
Cited by 33 publications
(36 citation statements)
references
References 60 publications
0
35
0
1
Order By: Relevance
“…However, neat “melts” of PGNPs have only recently begun to be explored, and they appear to provide an even wider property phase space than is afforded by block copolymers. This includes increased toughness, decreased polymer crystallinity, improved permeation properties, as well as electrical, magnetic, and optical properties …”
Section: Introductionmentioning
confidence: 99%
“…However, neat “melts” of PGNPs have only recently begun to be explored, and they appear to provide an even wider property phase space than is afforded by block copolymers. This includes increased toughness, decreased polymer crystallinity, improved permeation properties, as well as electrical, magnetic, and optical properties …”
Section: Introductionmentioning
confidence: 99%
“…The apexes of the polygon are chosen as the grafting points. SCFMT was used to reveal how chain stiffness regulates the reactivity of dynamic polymers grafted on nanoparticles [37]. The reacting rate can be determined from the product of average endsegment probabilities for chains from two opposing nanoparticles, P 2 = drφ end,I φ end,II , which characterizes the degree of overlap between the chain-end distribution of the two opposing nanoparticles.…”
Section: End Reactive Polymer Brushesmentioning
confidence: 99%
“…Cuando una nanopartícula entra en contacto con un sistema biológico, sea un hongo o una bacteria, las interacciones fisicoquímicas en la nano-biointerface podrían conducir al desarrollo de procesos biocatalíticos, a la formación de coronas de proteínas, el enrollamiento o envolvimiento de la nanopartícula por parte de la pared o membrana celular y, en últimas, a una respuesta intracelular del sistema biológico que consideraría a la nanopartícula como un objeto biocompatible o no (Nel, et al, 2009). Cuando una nanopartícula se acopla a un sistema biológico, se pueden generar interacciones complejas que involucran las de naturaleza entálpica y entrópica, las cuales propiciarían en el sistema transiciones de ordenamiento (Xu, et al, 2017). Por ejemplo, cuando se presenta adsorción de las proteínas sobre las nanopartículas, tanto la carga superficial que estas poseen (que daría origen a una interacción entálpica), como la naturaleza hidrofóbica de su superficie (que generaría una interacción entrópica), favorecen su adsorción (Cai, et al, 2017).…”
Section: Procesos Bio-fisicoquímicos Regulados Por La Entropíaunclassified