“…In the finite-dimensional case, Y = R n and U = R m , the KKT conditions ensure the existence of a unique adjoint variablē y * in the corresponding dual spaceȲ = R m such that 0 = L u (u * , y * ,ȳ * ) = f u (u * , y * ) + G u (u * , y * ) ȳ * 0 = L y (u * , y * ,ȳ * ) = f y (u * , y * ) + (G y (u * , y * ) − I) ȳ * 0 = Lȳ(u * , y * ,ȳ * ) = G(u * , y * ) − y * holds under the stated assumptions. Here, L : U × Y ×Ȳ → R denotes the Lagrangian L(u, y,ȳ) = f (u, y) +ȳ (G(u, y) − y) associated with (1). In combination with the contraction condition (2), the necessary optimality conditions yield an adjoint fixed-point iteration (see also [5,6,13])…”