2023
DOI: 10.1007/s43037-023-00278-x
|View full text |Cite
|
Sign up to set email alerts
|

One-sided invertibility of Toeplitz operators on the space of all holomorphic functions on finitely connected domains

Abstract: We prove that if the symbol of a Toeplitz operator acting on the space of all holomorphic functions on a finitely connected domain is non-degenerate and vanishes then the range of this operator is not complemented. As a result, we obtain that a Toeplitz operator on the space of all holomorphic functions on finitely connected domains is left invertible if and only if it is an injective Fredholm operator. Also, such an operator is right invertible if and only if it is a surjective Fredholm operator.

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 18 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?