In this paper, we prove that if a surface diagram of a surface-knot has at most two triple points and the lower decker set is connected, then the surface-knot group is isomorphic to the infinite cyclic group.
In this paper, we prove that if a surface diagram of a surface-knot has at most two triple points and the lower decker set is connected, then the surface-knot group is isomorphic to the infinite cyclic group.
In this paper, we describe a two-dimensional rectangular-cell-complex derived from a surface-knot diagram of a surface-knot. We define a pseudo-cycle for a quandle colored surface-knot diagram. We show that the maximal number of pseudo-cycles is a surface-knot invariant.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.