In this paper, we investigate q-Varchenko matrices for some hyperplane arrangements with symmetry in two andthree dimensions, and prove that they have a Smith normal formover Z[q]. In particular, we examine the hyperplane arrangement forthe regular n-gon in the plane and the dihedral model in the spaceand Platonic polyhedra. In each case, we prove that the q-Varchenko matrix associated with the hyperplane arrangement has a Smith normal form over Z[q] and realize their congruent transformation matrices over Z[q] as well.