In recent work we have developed a new unfolding method for computing one-loop modular integrals in string theory involving the Narain partition function and, possibly, a weak almost holomorphic elliptic genus. Unlike the traditional approach, the Narain lattice does not play any role in the unfolding procedure, T-duality is kept manifest at all steps, a choice of Weyl chamber is not required and the analytic structure of the amplitude is transparent. In the present paper, we generalise this procedure to the case of Abelian Z N orbifolds, where the integrand decomposes into a sum of orbifold blocks that can be organised into orbits of the Hecke congruence subgroup Γ 0 (N ). As a result, the original modular integral reduces to an integral over the fundamental domain of Γ 0 (N ), which we then evaluate by extending our previous techniques. Our method is applicable, for instance, to the evaluation of one-loop corrections to BPS-saturated couplings in the low energy effective action of closed string models, of quantum corrections to the Kähler metric and, in principle, of the free-energy of superstring vacua.