2021
DOI: 10.3390/math9131568
|View full text |Cite
|
Sign up to set email alerts
|

On the Notion of Reproducibility and Its Full Implementation to Natural Exponential Families

Abstract: Let F=Fθ:θ∈Θ⊂R be a family of probability distributions indexed by a parameter θ and let X1,⋯,Xn be i.i.d. r.v.’s with L(X1)=Fθ∈F. Then, F is said to be reproducible if for all θ∈Θ and n∈N, there exists a sequence (αn)n≥1 and a mapping gn:Θ→Θ,θ⟼gn(θ) such that L(αn∑i=1nXi)=Fgn(θ)∈F. In this paper, we prove that a natural exponential family F is reproducible iff it possesses a variance function which is a power function of its mean. Such a result generalizes that of Bar-Lev and Enis (1986, The Annals of Statist… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 14 publications
(31 reference statements)
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?