1990
DOI: 10.1007/978-3-642-74379-5_9
|View full text |Cite
|
Sign up to set email alerts
|

On the Mechanisms of Lava Flow Emplacement and Volcano Growth: Arenal, Costa Rica

Abstract: Arenal Volcano is composed of a hierarchical series of geologic units: unit flow, composite flow, lava field, and lava armor. Volume-limited unit flows are emplaced at short time intervals to make up composite flows. Composite flows form lava fields, and lava fields in turn, constitute the lava armor (the volcano). Tephra and lava breccias are selectively eroded from the steep slopes of the volcano by heavy rains and contribute little to the actual shape of the cone. This constructive process has important con… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
20
0
1

Year Published

1991
1991
2017
2017

Publication Types

Select...
8
1

Relationship

0
9

Authors

Journals

citations
Cited by 28 publications
(21 citation statements)
references
References 25 publications
0
20
0
1
Order By: Relevance
“…Flat-lying flattening planes are not observed in the central node of the Xtitle (Mexico) or Mauna Kea (Hawai'i) lava flows, showing again that the strain was recorded in high-flux tubes. These examples suggest that lava flows halt when extrusion ends, as inferred from natural observations in other lava flows (Borgia et al 1983;Guest et al 1987;Borgia and Linneman 1990).…”
Section: Discussionmentioning
confidence: 76%
“…Flat-lying flattening planes are not observed in the central node of the Xtitle (Mexico) or Mauna Kea (Hawai'i) lava flows, showing again that the strain was recorded in high-flux tubes. These examples suggest that lava flows halt when extrusion ends, as inferred from natural observations in other lava flows (Borgia et al 1983;Guest et al 1987;Borgia and Linneman 1990).…”
Section: Discussionmentioning
confidence: 76%
“…Following discussions at the European Commission's Joint Research Centre (JRC) during the VALgEO meeting, held at the JRC (Ispra, Italy) in October 2011, the theme grouping was extended to the operational response community. That is, the remote sensing and modelling communities would have to provide products that were Hulme (1974) t 0 u, E r , 1 Rheology and surface morphology Borgia et al (1983) Heat, kinetic and potential energy m, t 0 X, u, 1 Channel-fed flow emplacement Fink (1980) m 1 Flow surface folding Cigolini et al (1984) f, m u , h, w, u Flow velocity profile Park & Iversen (1984) q rad 3 t 0 , m u , h, u Dynamics of Bingham fluid q rad m X, h, u, E r , t Time-dependent flow profile Dragoni et al (1986) m, t 0 u, h, w, u, E r , 1 Velocity profile for laminar flow q rad q adv 3 E r , X Effusion rate and cooling controls on flow area Baloga (1987) m X, h, w, u Lava flow as kinematic wave Moore (1987) t 0 , m u , h, w, u, E r Channel flow and rheological model Baum et al (1989) m u Rhyolite: folds and Taylor instability Dragoni (1989) q rad 3 T, m, t 0 u, h, u, E r , 1 Temperature-dependent rheology and velocity Heslop et al (1989) m, t 0 u, h, w, u, E r , 1 Super-elevated flow Borgia & Linneman (1990) m, t 0 u, X, h, E r , t Channel-fed flow field growth Crisp & Baloga (1990a, b) q rad q adv 3 t Surface thermal structure and q rad Fink & Griffiths (1990) 3 Spreading of crusted viscous-gravity current Oppenheimer (1991) heat budget 3 Flow heat loss model Dragoni et al (1992) q rad 3 T, m, t 0 u, 1 Velocity profile for laminar flow Fink & Griffiths (1992) q conv 3 u, Pe Flow surface morphology Manley (1992) 3 f, m u Silicic flow thermo-rheology model Griffiths & Fink (1993) 3 Effects of surface cooling on the lava spreading Stasiuk et al (1993) 3 Influence of cooling on lava-flow dynamics Crisp & Baloga (1994) q rad , q ent q adv , L 3 f Thermal effects of entrainment and L Dragoni & Tallarico (1994) q rad T, f, m, t 0 u, h, u f-dependent rheology and velocity Keszthelyi (1994) q rad 3 Ra Effect of vesicles on cooling A. HARRIS ET AL. et al (1995) m u , h, w, u, E r , Re High velocity flow Dragoni et al (1995) q cond 3 m, t 0 u, h, u, 1 Roofing over of a channel Keszthelyi (1995) heat...…”
Section: Red Seedmentioning
confidence: 99%
“…En Arenal, a partir de dos focos eruptivos, se desarrolló entre 1968 y 1974 un campo de lavas Inferior (cráter A) y entre 1975 y finales del 2010 un campo de lava Superior (cráter C). El campo Inferior posee espesores acumulados significativamente mayores de hasta 170 m, y su tasa de efusión fue también más alta, mientras que el campo de lavas Superior fue relativamente más pequeño, con coladas cortas y menos espesas, y una tasa de efusión inferior (Borgia et al, 1998;Borgia & Linneman, 1990;Wadge et al, 2006). Thomas (1983) razonablemente piensa que no pudo solo haber habido un único foco eruptivo para cada campo de lavas en Cervantes, porque el tiempo de erupción habría sido de muchos años; entre 21,9 y 111,8 años para el campo de lava Occidental, por ejemplo.…”
Section: Origen De Las Depresiones Y Kipukas En La Coladaunclassified