On the dimension of systems of algebraic difference equations
Michael Wibmer
Abstract:We introduce a notion of dimension for the solution set of a system of algebraic difference equations that measures the degrees of freedom when determining a solution in the ring of sequences. This number need not be an integer, but, as we show, it satisfies properties suitable for a notion of dimension. We also show that the dimension of a difference monomial is given by the covering density of its set of exponents.
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.