2022
DOI: 10.1002/gamm.202200010
|View full text |Cite
|
Sign up to set email alerts
|

On the determination of thermal boundary conditions for parameter identifications of thermo‐mechanically coupled material models

Abstract: Identifiability and sensitivity of thermal boundary coefficients identified alongside thermal material parameters by means of full field measurements during a simple tension test are shown empirically using a simple tension test with self heating as a proof of concept. The identification is started for 10 different initial guesses, all of which converge toward the same optimum. The solution appears to be locally unique and parameters therefore independent, but a comparison against a reference solution indicate… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
1
0

Year Published

2022
2022
2022
2022

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
(1 citation statement)
references
References 15 publications
0
1
0
Order By: Relevance
“…In the first issue of this special volume, four contributions are compiled proposing (1) a shear evaluation tool using digital image correlation (DIC) for plane problems [5], the coupling of infrared thermography (IRT) and 3D DIC for both (2) identifying material parameters in metal plasticity [6] as well as (3) applicability studies of foams and auxetic materials [3], and, finally, (4) identifying the heat conductivity parameters in transversal isotropy using IRT [8].…”
mentioning
confidence: 99%
“…In the first issue of this special volume, four contributions are compiled proposing (1) a shear evaluation tool using digital image correlation (DIC) for plane problems [5], the coupling of infrared thermography (IRT) and 3D DIC for both (2) identifying material parameters in metal plasticity [6] as well as (3) applicability studies of foams and auxetic materials [3], and, finally, (4) identifying the heat conductivity parameters in transversal isotropy using IRT [8].…”
mentioning
confidence: 99%