2014
DOI: 10.1142/s1005386714000285
|View full text |Cite
|
Sign up to set email alerts
|

On Evolution Algebras

Abstract: The structural constants of an evolution algebra are given by a quadratic matrix. In this work we establish an equivalence between nil, right nilpotent evolution algebras and evolution algebras defined by upper triangular matrices. The classification of 2-dimensional complex evolution algebras is obtained. For an evolution algebra with a special form of the matrix, we describe all its isomorphisms and their compositions. We construct an algorithm running under Mathematica which decides if two finite dimensiona… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
2

Citation Types

0
60
0
2

Year Published

2016
2016
2022
2022

Publication Types

Select...
5
2

Relationship

0
7

Authors

Journals

citations
Cited by 59 publications
(63 citation statements)
references
References 5 publications
0
60
0
2
Order By: Relevance
“…Type Associative N 5,1 = N 4,1 ⊕ N 1,1 e 2 1 = e 2 2 = e 2 3 = e 2 4 = e 2 5 = 0 [5] Yes N 5,2 = N 4,2 ⊕ N 1,1 e 2 1 = e 2 , e 2 2 = e 2 3 = e 2 4 = e 2 5 = 0 [4,1] Yes N 5,3 (α) = N 4,3 (α) ⊕ N 1,1 e 2 1 = e 3 , e 2 2 = αe 3 , e 2 3 = e 2 4 = e 2 5 = 0 with α ∈ F * [3,2] Yes N 5,4 = N 4,4 ⊕ N 1,1 e 2 1 = e 2 , e 2 2 = 0, e 2 3 = e 4 , e 2 4 = e 2 5 = 0 [3,2] Yes N 5,5 (α, β) = N 4,5 (α, β) ⊕ N 1,1 e 2 1 = e 4 , e 2 2 = αe 4 , e 2 3 = βe 4 , e 2 4 = e 2 5 = 0 with α, β ∈ F * [2,3] Yes N 5,6 (α) = N 3,3 (α) ⊕ N 2,2 e 2 1 = e 3 , e 2 2 = αe 3 , e 2 3 = 0, e 2 4 = e 5 , e 2 5 = 0 with α ∈ F * [2,3] Yes N 5,7 = N 4,6 ⊕ N 1,1 e 2 1 = e 2 + e 3 , e 2 2 = e 4 , e 2 3 = −e 4 , e 2 4 = e 2 5 = 0 [2,2,1] No N 5,8 (α, β, γ) e 2 1 = e 5 , e 2 2 = αe 5 , e 2 3 = βe 5 , e 2 4 = γe 5 , e 2 5 = 0 with α, β, γ ∈ F * [1,4] Yes N 5,9 (α, β) e 2 1 = e 4 , e 2 2 = αe 4 + βe 5 , e 2 3 = e 5 , e 2 4 = e 2 5 = 0 with α, β ∈ F * [2,3] Yes N 5,10 (α) e 2 1 = e 2 + e 3 , e 2 2 = e 5 , e 2 3 = −e 5 , e 2 4 = αe 5 , e 2 5 = 0 with α ∈ F * [1,3,1] No . Let E be a power-associative evolution algebra of dimension 6.…”
Section: Multiplicationunclassified
See 2 more Smart Citations
“…Type Associative N 5,1 = N 4,1 ⊕ N 1,1 e 2 1 = e 2 2 = e 2 3 = e 2 4 = e 2 5 = 0 [5] Yes N 5,2 = N 4,2 ⊕ N 1,1 e 2 1 = e 2 , e 2 2 = e 2 3 = e 2 4 = e 2 5 = 0 [4,1] Yes N 5,3 (α) = N 4,3 (α) ⊕ N 1,1 e 2 1 = e 3 , e 2 2 = αe 3 , e 2 3 = e 2 4 = e 2 5 = 0 with α ∈ F * [3,2] Yes N 5,4 = N 4,4 ⊕ N 1,1 e 2 1 = e 2 , e 2 2 = 0, e 2 3 = e 4 , e 2 4 = e 2 5 = 0 [3,2] Yes N 5,5 (α, β) = N 4,5 (α, β) ⊕ N 1,1 e 2 1 = e 4 , e 2 2 = αe 4 , e 2 3 = βe 4 , e 2 4 = e 2 5 = 0 with α, β ∈ F * [2,3] Yes N 5,6 (α) = N 3,3 (α) ⊕ N 2,2 e 2 1 = e 3 , e 2 2 = αe 3 , e 2 3 = 0, e 2 4 = e 5 , e 2 5 = 0 with α ∈ F * [2,3] Yes N 5,7 = N 4,6 ⊕ N 1,1 e 2 1 = e 2 + e 3 , e 2 2 = e 4 , e 2 3 = −e 4 , e 2 4 = e 2 5 = 0 [2,2,1] No N 5,8 (α, β, γ) e 2 1 = e 5 , e 2 2 = αe 5 , e 2 3 = βe 5 , e 2 4 = γe 5 , e 2 5 = 0 with α, β, γ ∈ F * [1,4] Yes N 5,9 (α, β) e 2 1 = e 4 , e 2 2 = αe 4 + βe 5 , e 2 3 = e 5 , e 2 4 = e 2 5 = 0 with α, β ∈ F * [2,3] Yes N 5,10 (α) e 2 1 = e 2 + e 3 , e 2 2 = e 5 , e 2 3 = −e 5 , e 2 4 = αe 5 , e 2 5 = 0 with α ∈ F * [1,3,1] No . Let E be a power-associative evolution algebra of dimension 6.…”
Section: Multiplicationunclassified
“…Associative N 6,1 = N 5,1 ⊕ N 1,1 e 2 1 = e 2 2 = e 2 3 = e 2 4 = e 2 5 = e 2 6 = 0 [6] Yes N 6,2 = N 5,2 ⊕ N 1,1 e 2 1 = e 2 , e 2 2 = e 2 3 = e 2 4 = e 2 5 = e 2 6 = 0 [5,1] Yes N 6,3 (α) = N 5,3 (α) ⊕ N 1,1 e 2 1 = e 3 , e 2 2 = αe 3 , e 2 3 = e 2 4 = e 2 5 = e 2 6 = 0 with α ∈ F * [4,2] Yes N 6,4 = N 5,4 ⊕ N 1,1 e 2 1 = e 2 , e 2 2 = 0, e 2 3 = e 4 , e 2 4 = e 2 5 = e 2 6 = 0 [4,2] Yes N 6,5 (α, β) = N 5,5 (α, β) ⊕ N 1,1 e 2 1 = e 4 , e 2 2 = αe 4 , e 2 3 = βe 4 , e 2 4 = e 2 5 = e 2 6 = 0 with α, β ∈ F * [3,3] Yes N 6,6 (α) = N 5,6 (α) ⊕ N 1,1 e 2 1 = e 3 , e 2 2 = αe 3 , e 2 3 = 0, e 2 4 = e 5 , e 2 5 = e 2 6 = 0 with α ∈ F * [3,3] Yes N 6,7 (α, β, γ) = N 5,8 (α, β, γ) ⊕ N 1,1 e 2 1 = e 5 , e 2 2 = αe 5 , e 2 3 = βe 5 , e 2 4 = γe 5 , e 2 5 = e 2 6 = 0 with α, β, γ ∈ F * [2,4] Yes E…”
Section: Multiplication Typeunclassified
See 1 more Smart Citation
“…In [3] (see also [4]) two-dimensional evolution algebras over the complex numbers were classified. For the classification of two-dimensional evolution algebras over the real numbers see [9].…”
Section: Introductionmentioning
confidence: 99%
“…In [18], the evolution algebras have been used to describe the inheritance of a bisexual population and, in this setting, the existence of non-trivial homomorphisms onto the sex differentiation algebra have been studied in [19]. Algebraic notions such as nilpotency and solvability may be interpreted biologically as the fact that some of the original gametes (or generators) become extinct after certain generations, and these algebraic properties have been studied in [8,6,30,36,9,17,12]. Moreover evolution algebras associated with function spaces defined by Gibbs measures on a graph are considered in [29], to provide a natural introduction of thermodynamics in the studying of several systems in Biology, Physics and Mathematics.…”
Section: Introductionmentioning
confidence: 99%