This paper presents an overview of both research advancements and field applications of offshore chemical flooding technologies. Along with offshore oilfield development strategies that require maximization of oil production in a short development cycle, chemical flooding can become a potential avenue to accelerate oil production in secondary oil recovery mode. This makes it different from onshore chemical flooding processes that mostly focus on enhanced oil recovery in matured or maturing reservoirs. The advancements of offshore chemical flooding field applications are reviewed and analyzed. By summarizing offshore application cases, it also assesses the chemical formulations applied or studied and injection/production facilities required in the offshore environments. Main technical challenges are presented for scaling up the applications on offshore platforms or floating production storage and offloading (FPSO) systems.
The technologies reviewed include polymer flooding, surfactant-polymer flooding, and alkaline-surfactant-polymer flooding. By assessing the technology readiness level of these technologies, this study presents their perspectives and practical relevance for offshore chemical flooding applications. It has been long realized that chemical flooding, especially polymer flooding, can improve oil recovery in offshore oil fields. The applications in Bohai Bay (China), Dalia (Angola), and Captain (North Sea) provide the know-how workflows for offshore polymer flooding from laboratory to full field applications. It is feasible to implement offshore polymer injection either on platform or FPSO system. It is recommended to implement polymer flooding at early stage of reservoir development in order to maximize the investment of offshore facilities. By tuning the chemistry of polymer products, they can present very good compatibility with seawaters. Therefore, choosing a proper polymer is no longer a big issue in offshore polymer flooding.
There are also some interesting research findings reported on the development of novel surfactant chemistries for offshore applications. The outcome from a number of small-scale trials including the single well tracer tests on surfactant, alkaline-surfactant, surfactant-polymer in offshore Malaysia, Abu Dhabi, Qatar, and South China Sea provided valuable insights for the feasibility of chemical flooding in offshore environments. However, the technology readiness levels of surfactant-based chemical flooding processes are still low partially due to their complex interactions with subsurface fluids and lack of much interest in producing residual oil from matured offshore reservoirs. Based on the lessons learned from offshore applications, it can be concluded that several major challenges still need to be overcome in terms of large well spacing, reservoir voidage, produced fluid treatment, and high operational expense to successfully scale up surfactant based chemical flooding processes for offshore applications.