2016
DOI: 10.1016/j.optcom.2016.04.073
|View full text |Cite
|
Sign up to set email alerts
|

OCT imaging with temporal dispersion induced intense and short coherence laser source

Abstract: Lower coherence length and higher intensity are two indispensable requirements on the light source for high resolution and large penetration depth OCT imaging. While tremendous interest is being paid on engineering various laser sources to enlarge their bandwidth and hence lowering the coherence length, here we demonstrate another approach by employing strong temporal dispersion onto the existing laser source. Cholesteric liquid crystal (CLC) cells with suitable dispersive slope at the edge of 1-D organic phot… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
1
0

Year Published

2017
2017
2019
2019

Publication Types

Select...
2

Relationship

0
2

Authors

Journals

citations
Cited by 2 publications
(1 citation statement)
references
References 17 publications
(16 reference statements)
0
1
0
Order By: Relevance
“…The area of LCs for non-display applications is also rapidly growing. The application of LCs includes metamaterials [4], photonic crystals [5], plasmonic structures [6], THz devices [7], sensors [8], diffractive optics [9], adaptive lens technologies [10] and vision correction [11], as well as tunable filters [12] and dispersion for imaging [13]. In addition, nanoparticles can induce other new functions in liquid crystals, including improved response time [1415], surface plasmon resonance [16], and improvements in alignment [17].…”
Section: Resultsmentioning
confidence: 99%
“…The area of LCs for non-display applications is also rapidly growing. The application of LCs includes metamaterials [4], photonic crystals [5], plasmonic structures [6], THz devices [7], sensors [8], diffractive optics [9], adaptive lens technologies [10] and vision correction [11], as well as tunable filters [12] and dispersion for imaging [13]. In addition, nanoparticles can induce other new functions in liquid crystals, including improved response time [1415], surface plasmon resonance [16], and improvements in alignment [17].…”
Section: Resultsmentioning
confidence: 99%