Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
The aim of this study was to characterize the occupational exposure to inhalable dust and airborne fungi among archive and library workers based on qualitative and quantitative analyses of stationary and personal filter samples as well as nasal swabs. The study was carried out in 3 archives and 2 libraries and involved 9 workers of these institutions. Airborne fungi and inhalable dust samples were collected by stationary and personal measurements using filter samplers. Additionally, the nasal swabs from workers were taken after work-shift and microbiologically analysed. The average concentrations of inhalable dust and airborne fungi were 49 µg/m3 (SD = 91) and 299 CFU/m3 (SD = 579), respectively. Both dust and bioaerosol concentrations obtained using personal measurements were significantly higher than that measured by stationary sampling. The correlation analysis showed strong relationships between the concentrations of inhalable dust and airborne fungi (R = 0.57; p < 0.001). The fungal concentrations in swab samples from archive workers (median: 104 CFU/ml) were significantly higher than that in swabs from librarians (median: 1.4 CFU/ml). Among the airborne fungi, the widest spectrum of species was found among Penicillium and Aspergillus (including pathogenic A. fumigatus) genera. However, in samples from archives, yeast-like fungi from Sporidiobolus and Candida (including pathogenic C. albicans) genera predominated among isolated mycobiota. The results of this study revealed that airborne fungi were able to efficiently contaminate the nasal cavity of archive and library employees. The analysis of nasal swabs can be considered as an important analytical tool supporting the assessment of workers’ exposure to bioaerosols.
The aim of this study was to characterize the occupational exposure to inhalable dust and airborne fungi among archive and library workers based on qualitative and quantitative analyses of stationary and personal filter samples as well as nasal swabs. The study was carried out in 3 archives and 2 libraries and involved 9 workers of these institutions. Airborne fungi and inhalable dust samples were collected by stationary and personal measurements using filter samplers. Additionally, the nasal swabs from workers were taken after work-shift and microbiologically analysed. The average concentrations of inhalable dust and airborne fungi were 49 µg/m3 (SD = 91) and 299 CFU/m3 (SD = 579), respectively. Both dust and bioaerosol concentrations obtained using personal measurements were significantly higher than that measured by stationary sampling. The correlation analysis showed strong relationships between the concentrations of inhalable dust and airborne fungi (R = 0.57; p < 0.001). The fungal concentrations in swab samples from archive workers (median: 104 CFU/ml) were significantly higher than that in swabs from librarians (median: 1.4 CFU/ml). Among the airborne fungi, the widest spectrum of species was found among Penicillium and Aspergillus (including pathogenic A. fumigatus) genera. However, in samples from archives, yeast-like fungi from Sporidiobolus and Candida (including pathogenic C. albicans) genera predominated among isolated mycobiota. The results of this study revealed that airborne fungi were able to efficiently contaminate the nasal cavity of archive and library employees. The analysis of nasal swabs can be considered as an important analytical tool supporting the assessment of workers’ exposure to bioaerosols.
The PMV index forms the basis of international thermal comfort standards. PMV was developed based on empirical relationships between the metabolic rate of activity and the body mean skin temperature and evaporative heat loss under the comfort conditions. However, many recent studies have questioned the accuracy and reliability of the PMV predictions, particularly for the discomfort range. This paper develops a general formulation of PMV that does not involve the mean skin temperature and evaporative heat loss. The new metabolic-based predicted mean vote (MPMV) index is expressed as the difference between the metabolic rate of activity and the metabolic rate required to achieve a comfort state under the imposed environment conditions. The comfort metabolic rate is found to vary linearly with the metabolic rate required to maintain the body core and mean skin temperatures at the resting thermo-neutral state. The model constants are determined using public experimental data on thermal sensation votes of young and older people. The new formulation accounts for body core cooling to achieve comfort under hot exposures; it also addresses the overlooked non-shivering thermogenesis in the body heat balance at the comfort state and covers comfort requirements for young and older people in wakeful and sleep states.
The objective of this study was to reveal RULA method applications in terms of the knowledge, country, year and journal categories. The search was performed using the “Web of Science Core Collection”. The period from 1993 to April 2019 was selected. Eight hundred nine results were obtained, of which 226 were used. The largest number of publications was determined to be in the fields of industry and health and social assistance, which coincides with the OWAS and Standardized Nordic Questionnaire methods. By country, the USA stands out for its greater number of research studies and categories that are encompassed. By date, 2016 was the year when more studies were carried out, again coinciding with the Standardized Nordic Questionnaire. By journal, “Work—A Journal of Prevention Assessment and Rehabilitation” is highlighted, as it is for the REBA method as well. It was concluded that RULA can be applied to workers in different fields, usually in combination with other methods, while technological advancement provides benefits for its application.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.