Singlet oxygen generation in porous silicon (PSi) was investigated by a magneto-optical experiment. Photoluminescence (PL) quenching due to an energy transfer (ET) process mediated by an exchange interaction was monitored in the spectral range 1.4–2.5 eV and in a magnetic field of 0–6 Tesla at different levels of oxygen concentration and excitation pump power. When a magnetic field was applied, both PL recovery and, for magnetic fields below 2 Tesla and high concentrations of oxygen, an unusual additional pump power dependent quenching of the PL was observed. A rate equation model describing the behavior of PL from PSi with oxygen adsorbed at cryogenic temperatures in magnetic field was developed. The model has been expanded to cover the ET process as a function of the nanoparticle size.