2009 IEEE International Conference on Robotics and Automation 2009
DOI: 10.1109/robot.2009.5152601
|View full text |Cite
|
Sign up to set email alerts
|

Object classification based on a geometric grammar with a range camera

Abstract: Abstract-This paper proposes an object classification framework based on a geometric grammar aimed for mobile robotic applications. The paper first discusses the geometric grammar as a compact representation form for object categories with primitive parts as its constituent elements. The paper then discusses the object classification implemented as parsing of primitive parts. In particular, two approaches are discussed that constrain the search space in order to render the parsing of the primitive parts practi… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2

Citation Types

0
2
0

Year Published

2010
2010
2014
2014

Publication Types

Select...
4
1

Relationship

1
4

Authors

Journals

citations
Cited by 5 publications
(2 citation statements)
references
References 17 publications
0
2
0
Order By: Relevance
“…A classical solution in the area of object modeling is the use of calibrated stereo rigs. Therefore, initial works were devoted to their comparison with [37] Dynamic object detection and classification Color and light independence PMD Hussmann and Liepert [38] Object pose Easy object/background segmentation PMD Guomundsson et al [39] Known object pose estimation Light independent / Absolute scale SR3 Beder et al [40] Surface reconstruction using patchlets ToF easily combines with stereo PMD Fuchs and May [7] Precise surface reconstruction 3D at high rate SR3/O3D100 (Depth) Dellen et al [5] 3D object reconstruction 3D at high rate SR3 (Depth) Foix et al [6] Kuehnle et al [8] Object recognition for grasping 3D allow geometric primitives search SR3 Grundmann et al [41] Collision free object manipulation 3D at high rate SR3 + stereo Reiser and Kubacki [42] Position based visual servoing 3D is simply obtained / No model needed SR3 (Depth) Gachter et al [43] Object part detection for classification 3D at high rate SR3 Shin et al [44] SR2 Klank et al [45] Mobile manipulation Easy table/object segmentation SR4 Marton et al [46] Object categorization ToF easily combines with stereo SR4 + color Nakamura et al [47] Mobile manipulation Easy table segmentation SR4 + color Saxena et al [9] Grasping unknown objects 3D at high rate SR3 + stereo Zhu et al [48] Short range depth maps ToF easily combines with stereo SR3 + stereo Lindner et al [49] Object segmentation for recognition Easy color registration PMD + color camera Fischer et al [50] Occlusion handling in virtual objects 3D at high rate PMD + color camera…”
Section: Object-related Tasksmentioning
confidence: 99%
See 1 more Smart Citation
“…A classical solution in the area of object modeling is the use of calibrated stereo rigs. Therefore, initial works were devoted to their comparison with [37] Dynamic object detection and classification Color and light independence PMD Hussmann and Liepert [38] Object pose Easy object/background segmentation PMD Guomundsson et al [39] Known object pose estimation Light independent / Absolute scale SR3 Beder et al [40] Surface reconstruction using patchlets ToF easily combines with stereo PMD Fuchs and May [7] Precise surface reconstruction 3D at high rate SR3/O3D100 (Depth) Dellen et al [5] 3D object reconstruction 3D at high rate SR3 (Depth) Foix et al [6] Kuehnle et al [8] Object recognition for grasping 3D allow geometric primitives search SR3 Grundmann et al [41] Collision free object manipulation 3D at high rate SR3 + stereo Reiser and Kubacki [42] Position based visual servoing 3D is simply obtained / No model needed SR3 (Depth) Gachter et al [43] Object part detection for classification 3D at high rate SR3 Shin et al [44] SR2 Klank et al [45] Mobile manipulation Easy table/object segmentation SR4 Marton et al [46] Object categorization ToF easily combines with stereo SR4 + color Nakamura et al [47] Mobile manipulation Easy table segmentation SR4 + color Saxena et al [9] Grasping unknown objects 3D at high rate SR3 + stereo Zhu et al [48] Short range depth maps ToF easily combines with stereo SR3 + stereo Lindner et al [49] Object segmentation for recognition Easy color registration PMD + color camera Fischer et al [50] Occlusion handling in virtual objects 3D at high rate PMD + color camera…”
Section: Object-related Tasksmentioning
confidence: 99%
“…The tracking of the different parts in the image sequence is performed using an extended particle filter, and the recognition algorithm is based on a SVM, that proves again to be useful in typical noisy ToF images. Later, Shin et al [44] used this incremental part detector to propose a classification algorithm based on a geometric grammar. However, they use a simulated environment because the classification in real scenarios does not seem to be reliable enough.…”
Section: Object-related Tasksmentioning
confidence: 99%