2020
DOI: 10.1108/hff-09-2019-0692
|View full text |Cite
|
Sign up to set email alerts
|

Numerical study on convective flow and heat transfer in 3D inclined enclosure with hot solid body and discrete cooling

Abstract: Purpose This study aims to deal the numerical simulation on buoyant convection and energy transport in an inclined cubic box with diverse locations of the heater and coolers. Design/methodology/approach The left/right walls are cooled partially whereas the other walls are kept adiabatic. In the left/right walls, three different locations of the cooler are examined, whereas heater moves in three locations in the middle of the enclosed box. The governing models are numerically solved using the finite-element m… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
5

Citation Types

0
5
0

Year Published

2020
2020
2024
2024

Publication Types

Select...
7

Relationship

0
7

Authors

Journals

citations
Cited by 10 publications
(5 citation statements)
references
References 27 publications
0
5
0
Order By: Relevance
“…The state of the art of natural convection numerical studies, in the most diverse applications and methodologies of modeling and solution, is broadly represented by the references (Salari et al , 2017) in the three-dimensional study of turbulent/transitional natural convection with different turbulence/transition models in trapezoidal enclosures (Dash and Dash, 2020). In the analysis of conjugate heat transfer by natural convection and thermal radiation in a horizontal cylinder that is suspended in the air; (Lukose and Basak, 2020) in the study of natural convection through the Galerkin finite element method in nine different shapes of containers, with the same surface area and identical isothermal heat input at the bottom wall; (Henniche and Korichi, 2020) in the study and numerical simulation (using the software OpenFOAM®) of enhanced mixed convection heat transfer in a vertical channel with staggered inclined baffles; Raizah (2020) in the application of the ISPH method for the study of natural convection with copper-water nanofluid inside cavities with cross blades or circular cylinder cylinder; Alshomrani et al (2020) in the three-dimensional study of the influence of different locations of cooler and the tilting angles of a cavity on natural convection heat transfer in a laminar regime; Aghighi et al (2020) in obtaining solutions, through the Galerkin’s weighted residual finite element method, of the natural convection of Casson fluid in a square enclosure, under conditions of differentially heated side walls; Sasidharan and Dutta (2020) in the study of the thermal performance of a hybrid tubular and cavity solar thermal receiver; Ullah et al (2021) in the two-dimensional study of natural convection of micropolar nanofluid in a rectangular vertical container, heated on the lower wall to generate the internal flow; Lukose and Basak (2021) in the extensive literature review on the mixed convection and the proposition of 10 unified models in different physical–numerical conditions; and Nishad et al (2021) in the two-dimensional study of natural convection inside a wavy enclosure with Cu-water nanofluid under magnetic field and using the element-free Galerkin method (EFGM) with parallel algorithm.…”
Section: Introductionmentioning
confidence: 99%
“…The state of the art of natural convection numerical studies, in the most diverse applications and methodologies of modeling and solution, is broadly represented by the references (Salari et al , 2017) in the three-dimensional study of turbulent/transitional natural convection with different turbulence/transition models in trapezoidal enclosures (Dash and Dash, 2020). In the analysis of conjugate heat transfer by natural convection and thermal radiation in a horizontal cylinder that is suspended in the air; (Lukose and Basak, 2020) in the study of natural convection through the Galerkin finite element method in nine different shapes of containers, with the same surface area and identical isothermal heat input at the bottom wall; (Henniche and Korichi, 2020) in the study and numerical simulation (using the software OpenFOAM®) of enhanced mixed convection heat transfer in a vertical channel with staggered inclined baffles; Raizah (2020) in the application of the ISPH method for the study of natural convection with copper-water nanofluid inside cavities with cross blades or circular cylinder cylinder; Alshomrani et al (2020) in the three-dimensional study of the influence of different locations of cooler and the tilting angles of a cavity on natural convection heat transfer in a laminar regime; Aghighi et al (2020) in obtaining solutions, through the Galerkin’s weighted residual finite element method, of the natural convection of Casson fluid in a square enclosure, under conditions of differentially heated side walls; Sasidharan and Dutta (2020) in the study of the thermal performance of a hybrid tubular and cavity solar thermal receiver; Ullah et al (2021) in the two-dimensional study of natural convection of micropolar nanofluid in a rectangular vertical container, heated on the lower wall to generate the internal flow; Lukose and Basak (2021) in the extensive literature review on the mixed convection and the proposition of 10 unified models in different physical–numerical conditions; and Nishad et al (2021) in the two-dimensional study of natural convection inside a wavy enclosure with Cu-water nanofluid under magnetic field and using the element-free Galerkin method (EFGM) with parallel algorithm.…”
Section: Introductionmentioning
confidence: 99%
“…While Fabregat and Pallares [19] cavity was heated by imposing a constant temperature at the bottom walls and cooled by imposing a constant temperature at the top walls. Another study by Alshomrani et al [20] inside inclined cavity. On the left and right walls three unlike locations of the cooler were examined.…”
Section: Introductionmentioning
confidence: 96%
“…They found that at Ra = 6.51 × 10 4 , the convective heat transfer decreases by increasing obstacles height. Alshomrani et al (2020) examined computationally thermal convection in an inclined cube having local heater and coolers. Authors have shown that the inclination angle of the cavity and the coolers position significantly impact on the flow structures and energy transference within the chamber.…”
Section: Introductionmentioning
confidence: 99%