In the present work, we study numerically freely propagating flame in the stoichiometric propane-air mixture. The adiabatic small tubes with one end fully open and the second one characterized by different degrees of opening are examined. The degree of opening of the tubes was equal to: 0% (completely closed), 25%, 50%, 75% and 100% (fully opened) of the tube cross-sectional area. Several mechanisms, such as thermal expansion of the burned gas that can leave the tube freely (fully opened left end of the tube), frictional forces and movement of the unburned mixture generated by a pressure gradient, occur simultaneously during flame propagation. As a result, a nearly-exponential dependence of flame propagation speed as a function of time is observed. For fully open right end (100%), normalized flame speed reaches about 75–80 at the end of the tubes. By partially closing the right end, this effect is delayed and reduced – for 25% of the opening normalized flame speed is about 20 for all tube diameters.