2022
DOI: 10.3390/met13010079
|View full text |Cite
|
Sign up to set email alerts
|

Numerical Simulation of Penetration Process of Depleted Uranium Alloy Based on an FEM-SPH Coupling Algorithm

Abstract: In order to quantitatively study the penetration capability of depleted uranium alloy, a simulation model of bullet impact on target plate with FEM-SPH coupling algorithm was established by using LS-DYNA software, which was combined with Johnson-Cook intrinsic model, Johnson-Cook fracture criterion, and equation of state to conduct a simulation study of alloy bullets made of depleted uranium alloy, tungsten alloy, and high-strength steel to penetrate target plate at 1400 m/s initial velocity. The results show … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2024
2024
2024
2024

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
references
References 14 publications
0
0
0
Order By: Relevance