2020
DOI: 10.1007/s10999-020-09517-7
|View full text |Cite
|
Sign up to set email alerts
|

Numerical and theoretical analysis of the dynamic mechanical behaviour of a modified rhombic dodecahedron lattice structure

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1

Citation Types

0
21
0
1

Year Published

2021
2021
2023
2023

Publication Types

Select...
8

Relationship

1
7

Authors

Journals

citations
Cited by 19 publications
(22 citation statements)
references
References 37 publications
0
21
0
1
Order By: Relevance
“…Mazur et al's research results [21] showed that lattice structures with straight struts are prone to fracture or collapse in the connecting region, i.e., node position, which may limit the bearing capacity of lattice structures. Cao et al [22] found that a similar phenomenon occurred with a rhombic dodecahedron (Dodeca) lattice structure during the loading process. Yue et al [23], meanwhile, studied the effect of porosity and the cell edge on the compressive platform stress and energy absorption of a rhombic dodecahedron and a truncated octahedron.…”
Section: Introductionmentioning
confidence: 81%
See 1 more Smart Citation
“…Mazur et al's research results [21] showed that lattice structures with straight struts are prone to fracture or collapse in the connecting region, i.e., node position, which may limit the bearing capacity of lattice structures. Cao et al [22] found that a similar phenomenon occurred with a rhombic dodecahedron (Dodeca) lattice structure during the loading process. Yue et al [23], meanwhile, studied the effect of porosity and the cell edge on the compressive platform stress and energy absorption of a rhombic dodecahedron and a truncated octahedron.…”
Section: Introductionmentioning
confidence: 81%
“…The above studies mainly focus on the quasi-static compression responses [22,23,26,27] of Dodeca and Octa structures. To date, experimental evidence on how we can improve the dynamic impact behavior of Dodeca and Octa has not been systematically discussed.…”
Section: Introductionmentioning
confidence: 99%
“…Figure 8 Water mist explosion suppression technology: (a) Typical droplet deformation process under shock wave [103] ; (b-c) The effect and mechanism of water mist explosion suppression [105] . [107][108][109] 和金属夹层结构的舰船应用情况 [110] 。近些年,学者们主要关 注夹层结构的冲击动力学性能和吸能特性。Wu 等人 [111] 通过实验和数值的方法研究了由蜂 窝铝芯层和碳纤维增强板组成的仿生夹层结构的冲击响应, 认为该结构可以显著降低传入结 构的冲击波的强度,可以显著提高结构的能量吸收特性。李汶蔚 [112] 研究了水下爆炸冲击载 荷作用下金属夹芯结构的抗冲击性能问题, 建立了反映金属蜂窝夹芯结构抗冲击性能随冲击 强度和芯材相对密度变化的结构-载荷-性能量化关系。Li 等 [113] 研究了夹层结构在冲击载荷 作用下的解析解,并于有限元模拟结果比较好的吻合。针对传统桁架点阵性能受限和极小曲 面结构构型设计单一的问题 [114] ,Cao 等人 [115][116][117][118][119] 片侵彻金属靶板的研究已有文献进行了综述 [120] ,其理论模型、仿真方法和试验方法已经较 为成熟。非金属装甲材料在抗侵彻领域相对金属材料更具有优势。现代复合装甲最常用的非 金属装甲材料是陶瓷材料和纤维增强复合材料。 陶瓷材料硬度高且压缩强度高,可以在抗侵彻时可以钝化、侵蚀和碎裂破片,但陶瓷的 脆性和低抗拉强度使得陶瓷在抗侵彻过程中没办法吸收较多能量 [121] 。高速破片侵彻作用下 陶瓷材料的典型破坏形式主要是侵彻时子弹发生大变形,甚至破碎;陶瓷材料中裂纹从弹着 点开始发生扩展,最终形成近似锥形的破坏区域,破碎的陶瓷碎块发生飞溅,行成二次破片 [122] 。由于陶瓷材料缺点较为明显,且不具备抗重复打击的能力,因此其应用范围较为局限。 纤维增强复合材料密度小,强度与模量高,抗拉性能较好,抗侵彻性能优异。纤维增强 复合材料目前在抗侵彻领域发展较快,已经经历了高性能玻纤复合装甲材料、芳纶纤维复 合装甲材料、高性能聚乙烯纤维复合装甲材料等几个阶段 [89] 。高速破片侵彻作用下纤维 增强复合材料的典型破坏形式包括纤维剪切破坏和拉伸破坏、纤维-基体脱粘、基体开裂 等。纤维材料的强度、纤维与基体之间的界面强度是影响其抗侵彻性能的主要因素 [123] 。 由于不用抗弹材料的力学特性,单一材料的抗弹装甲难以满足使用要求,通过结构合理 优化设计,充分发挥各种抗弹材料的性能优势,一些学者将单一材料组合成复合装甲结构。 常见的复合装甲结构主要是由陶瓷、纤维增强复合材料和金属材料组成的两层 [124][125][126] 、三层 [127][128][129] 或多层 [130,131] [132,133] 。负 泊松比结构的抗冲击性能相比传统结构会更高,其性能不仅和基体材料性质有关,还取决于 结构的拓扑构型,目前研究较多的有内凹六边形结构 [16,17,134,135] 、星型结构 [136,…”
Section: 水雾抑爆技术unclassified
“…In recent years, with the increasing maturity of additive manufacturing technology, the development of lattice materials has been greatly promoted. Lattice material is a kind of artificial periodic material with good lightweight, porosity, and designability [1,2]. By adjusting the topology configuration, cell sizes and cell arrangement rules, the mechanical properties of lattice materials can be improved to adapt to different engineering applications [3][4][5].…”
Section: Introductionmentioning
confidence: 99%