The effect of a specific Chinese swimmer’s trunk oscillation on dolphin kick was investigated in order to optimize competitive swimming movement. Using a numerical simulation method based on multi-body motion, different swimmer’s trunk oscillation during a dolphin kick was analyzed. The simulation was conducted using 3D incompressible Navier–Stokes equations and renormalization group k-ε turbulence model, combined with the Volume of Fluid method to capture the water surface. The simulation’s results were evaluated by comparing them with experimental data and with previous studies. The net streamwise forces, mean swimming velocity, and joint moments were also investigated. There was a positive correlation between the mean swimming velocity and the amplitudes of the swimmer’s trunk oscillation, where the Pearson correlation coefficient was 0.986 and the selected model was statistically significant (p < 0.05). In addition, as the mean swimming velocity increased from 1.42 m/s in Variant 1 to 2 m/s in Variant 5, the maximum positive moments of joints increased by about 24.7% for the ankles, 27.4% for the knees, −3.9% for the hips, and 5.8% for the upper waist, whereas the maximum negative moments of joints increased by about 64.5% for the ankles, 28.1% for the knees, 23.1% for the hips, and 10.1% for the upper waist. The relationship between the trunk oscillation and the vortices was also investigated. Therefore, it is recommended that swimmers should try to increase the amplitudes of trunk oscillation to increase their swimming velocity. In order to achieve this goal, swimmers should increase strength training for the ankles, knees, and upper waist during the upkick. Moreover, extra strength training is warranted for the ankles, knees, hips, and upper waist during the downkick.