2024
DOI: 10.1016/j.physletb.2024.138448
|View full text |Cite
|
Sign up to set email alerts
|

Nuclear level density from relativistic density functional theory and combinatorial method

X.F. Jiang,
X.H. Wu,
P.W. Zhao
et al.
Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
0
0

Year Published

2024
2024
2024
2024

Publication Types

Select...
2

Relationship

0
2

Authors

Journals

citations
Cited by 2 publications
(1 citation statement)
references
References 60 publications
0
0
0
Order By: Relevance
“…These phenomenological models with simplified assumptions are usually more computationally accessible but are limited to excitation energies above 5 MeV. Microscopic models, such as Hartree-Fock-Bardeen-Cooper-Schrieffer (HF-BCS) [9], Gogny-Hartree-Fock-Bogoliubov (Gogny-HFB) [10], and Skyrme-Hartree-Fock-Bogoliubov (Skyrme-HFB) [11], and density functional theory combinatorial models [12,13], the Monte Carlo shell model [14], quasi-particle random phase approximation (QRPA) [15], and core-quasi particle coupling (CQC) model [16], have attempted to describe the NLD from more fundamental particle interactions with excitation energies ranging from 0 to 20 MeV. Thus, a high efficiency and unified predictive model is urgently required for the application of NLD.…”
Section: Introductionmentioning
confidence: 99%
“…These phenomenological models with simplified assumptions are usually more computationally accessible but are limited to excitation energies above 5 MeV. Microscopic models, such as Hartree-Fock-Bardeen-Cooper-Schrieffer (HF-BCS) [9], Gogny-Hartree-Fock-Bogoliubov (Gogny-HFB) [10], and Skyrme-Hartree-Fock-Bogoliubov (Skyrme-HFB) [11], and density functional theory combinatorial models [12,13], the Monte Carlo shell model [14], quasi-particle random phase approximation (QRPA) [15], and core-quasi particle coupling (CQC) model [16], have attempted to describe the NLD from more fundamental particle interactions with excitation energies ranging from 0 to 20 MeV. Thus, a high efficiency and unified predictive model is urgently required for the application of NLD.…”
Section: Introductionmentioning
confidence: 99%