2021
DOI: 10.2109/jcersj2.21056
|View full text |Cite
|
Sign up to set email alerts
|

Novel radio-photoluminescence materials and applications

Abstract: Radio-photoluminescence (RPL) is a phenomenon whereby a new luminescent centre is generated in a material by the interaction of an ionizing radiation with the medium. Despite the usefulness of RPL, e.g. in radiation measurements, there are only a limited number of RPL materials available today, which limits our understanding of the phenomenon as well as extending its use for new applications. In recent investigations, a large number of new RPL material systems have been proposed for radiation measurements. In … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1

Citation Types

0
10
0
3

Year Published

2022
2022
2024
2024

Publication Types

Select...
7

Relationship

0
7

Authors

Journals

citations
Cited by 30 publications
(13 citation statements)
references
References 47 publications
0
10
0
3
Order By: Relevance
“…4 RPL responses, reusability and effectiveness of RPL in relation to band gap energy of host in Sm-doped materials (a) Linear response curve of RPL intensity and radiation dose of Sm-doped BaF2-Al2O3-B2O3 [34] ; (b) Dose response curves of Sm-doped CaSO4, SrSO4, BaSO4 and commercial RPL glass dosimeter (Ag-PG) [35] ; (c) Stability curve of RPL signal doped with CaSO4, SrSO4 and BaSO4 during UV excitation. The measured irradiation dose of each group was fixed at 5.0 Gy, and PL spectrum was measured every minute after irradiation (20 times in total) to obtain its response value [35] ; Reusability of Sm-doped RPL detectors after (d) heat treatment and (e) UV irradiation erasure [7] ; (f) Effectiveness of RPL in Sm-doped RPL materials as a function of band gap energy of host [74] 2.6 其他材料 除上述几种体系外,许多新型 RPL 材料也陆续 被发现。例如,氮掺杂碳(C:N)以碳作为基质且生物 剂量当量非常高,在人体剂量监测中引起了高度关 注 [41] 。C:N 在与电离辐射相互作用时会在基质中产 生晶格空位,经高温热处理后,空位会发生迁移, 在迁移的过程中被掺杂的氮原子捕获,形成氮空位 (Nitrogen vacancy, NV)中心。NV 中心是一种基于置 换氮和相邻空位的发光点缺陷,能够被 450~600 nm 激发,在 600~800 nm 的范围内发出红光。Onoda 等 [41] 将金刚石中的 NV 中心用于荧光核轨迹探测器。 无掺杂型体系 RPL 材料( 如:Li2CO3 [46] 、 K2CO3 [47] 、MgF2 [43] 、CaSO4 [48] 等)也是近些年研究的 重点之一 [75][76] 。和上述的掺杂型材料不同,由于没 有掺杂杂质离子,无掺杂型材料的发光机理仍待探 究。 Nakamura 等 [46] 通过真空烧结技术制备出无掺杂 的 Li2CO3, 并观察到 RPL 现象。 图 5(a)显示了 Li2CO3 在 X 射线(10 mGy)辐照前后的发射谱,发射峰位于 470 nm,随着 X 射线的辐照,发射峰的强度增加。 插图比较了 X 射线(1 Gy)辐照前后的激发谱,可以…”
Section: Cu 离子掺杂 Rpl 材料unclassified
See 2 more Smart Citations
“…4 RPL responses, reusability and effectiveness of RPL in relation to band gap energy of host in Sm-doped materials (a) Linear response curve of RPL intensity and radiation dose of Sm-doped BaF2-Al2O3-B2O3 [34] ; (b) Dose response curves of Sm-doped CaSO4, SrSO4, BaSO4 and commercial RPL glass dosimeter (Ag-PG) [35] ; (c) Stability curve of RPL signal doped with CaSO4, SrSO4 and BaSO4 during UV excitation. The measured irradiation dose of each group was fixed at 5.0 Gy, and PL spectrum was measured every minute after irradiation (20 times in total) to obtain its response value [35] ; Reusability of Sm-doped RPL detectors after (d) heat treatment and (e) UV irradiation erasure [7] ; (f) Effectiveness of RPL in Sm-doped RPL materials as a function of band gap energy of host [74] 2.6 其他材料 除上述几种体系外,许多新型 RPL 材料也陆续 被发现。例如,氮掺杂碳(C:N)以碳作为基质且生物 剂量当量非常高,在人体剂量监测中引起了高度关 注 [41] 。C:N 在与电离辐射相互作用时会在基质中产 生晶格空位,经高温热处理后,空位会发生迁移, 在迁移的过程中被掺杂的氮原子捕获,形成氮空位 (Nitrogen vacancy, NV)中心。NV 中心是一种基于置 换氮和相邻空位的发光点缺陷,能够被 450~600 nm 激发,在 600~800 nm 的范围内发出红光。Onoda 等 [41] 将金刚石中的 NV 中心用于荧光核轨迹探测器。 无掺杂型体系 RPL 材料( 如:Li2CO3 [46] 、 K2CO3 [47] 、MgF2 [43] 、CaSO4 [48] 等)也是近些年研究的 重点之一 [75][76] 。和上述的掺杂型材料不同,由于没 有掺杂杂质离子,无掺杂型材料的发光机理仍待探 究。 Nakamura 等 [46] 通过真空烧结技术制备出无掺杂 的 Li2CO3, 并观察到 RPL 现象。 图 5(a)显示了 Li2CO3 在 X 射线(10 mGy)辐照前后的发射谱,发射峰位于 470 nm,随着 X 射线的辐照,发射峰的强度增加。 插图比较了 X 射线(1 Gy)辐照前后的激发谱,可以…”
Section: Cu 离子掺杂 Rpl 材料unclassified
“…RPL glass particles exposed to gamma rays ( 60 Co) can emit orange light under UV light [87] 3.2 荧光核轨道探测器 RPL 不仅可以被辐射照射诱导,同样也可以被 重粒子诱导。由于入射在材料上的重粒子在基体中 发生非弹性迁移时会沉积它们的能量,沉积的能量 会诱导基体沿迁移轨迹发生电离作用。最终,沿着 重粒子的核轨迹路径上产生一系列的 RPL 中心。由 此产生的 RPL 信号不仅能够通过传统的稳态 PL 技 术读出,也可以通过共聚焦荧光显微镜技术读出。 基于此,RPL 可被用于荧光核轨迹探测器 (Fluorescent nuclear track detector, FNTD)。 Sykora 等 [88] 使用 Al2O3:C,Mg 晶体板作为 RPL 探测器,共聚焦荧光显微镜作为读出装置得到了快 中子轨迹的 2D 荧光图像,通过观察荧光的离散轨 道可以间接获得核子的移动轨迹,如图 7(a)所示。 由于 RPL 强度与沉积能量呈线性关系,可通过轨迹 密度和分布的直方图区分重粒子的种类 [89] , 如图 7(c) 所示。此外,为了研究 Al2O3:C,Mg 在 FNTD 的成像 应用中的可重复性,Muneem 等 [12] 提出一种在一定 轨道密度下进行光学漂白的方法,发现 Al2O3:C,Mg 在高轨道密度下能够重复使用 7 次以上。此外, Bilski 等 [90] 将 LiF 用于 FNTD,观察到入射的中子 通过 6 Li(n,α) 3 H 核反应和 6 Li 相互作用, 产生 α 粒子 和 3 H 核子,如图 7(b)所示。Kodaire 等 [91] 将 Ag-PG 用于 FNTD, 在共聚焦显微镜下检测到从 C 到 Fe 等 一系列重粒子的荧光核轨迹。Onoda 等 [41] 将金刚石 中的 NV 中心用于 FNTD,使用高能重带电粒子照 射金刚石,成功观察到金刚石中 NV 中心的离子轨 迹。 图 7 RPL 材料用于 FNTD 以及 MRT Fig. 7 RPL materials for FNTD and MRT (a) Nuclear track detection of fast neutrons demonstrated by using Al2O3:C,Mg [88] ; (b) Nuclear track image obtained by using LiF as FNTD [7] ; (c) A histogram of nuclear tracks detected by Al2O3:C,Mg [89] ; (d) Dose response function of Sm-doped RPL materials for dose monitoring in MRT [74] 此外,研究人员通过使用受激发射损耗的显微 技术(Stimulated emission depletion, STED)突破了衍 射极限的瓶颈,图像的空间分辨率可达几十纳米 [7] 。 基于这项技术,FNTD 有望应用于辐射生物学领域, 如使用生物细胞包裹 RPL 探测器,以检测生物细胞 的移动轨迹或辐射损伤等 [92] 。…”
Section: D 模型用于人体的剂量监测unclassified
See 1 more Smart Citation
“…One of the key merits of RPL materials is that their photoluminescence can be non-destructively and repetitively read out, which contrasts sharply from thermally or optically stimulated luminescence (TSL or OSL) materials typically requiring a destructive readout process. 5 Regardless of the aforementioned advantage, RPL materials remain scarce even after more than half a century of development. Their material candidates are limited to the metal-ion doped inorganics, e.g., Ag-doped phosphate glass and Sm-doped ceramics, whose luminescence responses are triggered by the radiation-induced redox transition of the metal ions.…”
mentioning
confidence: 99%
“…Their material candidates are limited to the metal-ion doped inorganics, e.g., Ag-doped phosphate glass and Sm-doped ceramics, whose luminescence responses are triggered by the radiation-induced redox transition of the metal ions. 5,6 Moreover, RPL materials often have limited dynamic ranges (10 mGy to 10 Gy), rendering their applicability in certain radiation monitoring scenarios infeasible. 4 Therefore, there is a demand for ongoing exploration to discover new types of RPL materials.…”
mentioning
confidence: 99%