2022
DOI: 10.1360/ssi-2021-0331
|View full text |Cite
|
Sign up to set email alerts
|

Novel cooperative localization method of over-the-horizon shortwave emitters based on direction-of-arrival and time-difference-of-arrival measurements

Abstract: …c ½ , áÅË , ň••, ˆž , Ž.{Ûe., QR©), nØ5U©Û 1 Úó Â&Ò½ Eâ®2•A^uoe¦¢½!gÄf¨!/ tÿ!A:|Í Ãõó'Eâ+ •, ÙÓž•´I"S +•ØOE½" | Eâ [1∼3] . 2015c5 , I[›Eï \Î" ¬ò/à ‚½ 9Ù°Ý0Š••Ip# '¥ '…Eâ, \ ¡í?¢-›ErI ÔÑ© ‡5¥I› E20256. 2016c12 , IÖ l Jp(IVH)Ionosphere Virtual Height)ëê [16… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
1
0

Year Published

2023
2023
2024
2024

Publication Types

Select...
3

Relationship

0
3

Authors

Journals

citations
Cited by 3 publications
(1 citation statement)
references
References 42 publications
(4 reference statements)
0
1
0
Order By: Relevance
“…Based on Equation (3), the CCRLB of uo ${\mathbf{u}}^{o}$ can be obtained by [25–27]: boldCboldCboldRboldLboldB=boldCboldRboldLboldBboldCboldRboldLboldBtrueΛ˜()boldΛ˜TboldCboldRboldLboldBtrueΛ˜1boldΛ˜TboldCboldRboldLboldB=Σ1boldΣ1T(CRLB)1boldΣ11boldΣ1T $\mathbf{C}\mathbf{C}\mathbf{R}\mathbf{L}\mathbf{B}=\mathbf{C}\mathbf{R}\mathbf{L}\mathbf{B}-{\mathbf{C}\mathbf{R}\mathbf{L}\mathbf{B}\widetilde{\boldsymbol{\Lambda }}\left({\widetilde{\boldsymbol{\Lambda }}}^{\mathrm{T}}\mathbf{C}\mathbf{R}\mathbf{L}\mathbf{B}\widetilde{\boldsymbol{\Lambda }}\right)}^{-1}{\widetilde{\boldsymbol{\Lambda }}}^{\mathrm{T}}\mathbf{C}\mathbf{R}\mathbf{L}\mathbf{B}={\boldsymbol{\Sigma }}_{1}{{\left({\boldsymbol{\Sigma }}_{1}^{T}{(\text{CRLB})}^{-1}{\boldsymbol{\Sigma }}_{1}\right)}^{-1}\boldsymbol{\Sigma }}_{1}^{\mathrm{T}}$ where trueΛ˜=boldΛ1bolduoT $\widetilde{\boldsymbol{\Lambda }}={\left[{\boldsymbol{\Lambda }}_{1}{\mathbf{u}}^{o}\right]}^{\mathrm{T}}$ and Σ1=[]I2center()1e2uxo/uzo()1e2uyo/uzo ${\boldsymbol{\Sigma }}_{1}=\left[\begin{array}{@{}c@{}}{\mathbf{I}}_{2}\\ \begin{array}{cc}-\left(1-{e}^{2}\right){\mathbf{u}}_{x}^{o}/{\mathbf{u}}_{z}^{o}& -\left(1-{e}^{2}\right){\mathbf{...…”
Section: Ccrlbmentioning
confidence: 99%
“…Based on Equation (3), the CCRLB of uo ${\mathbf{u}}^{o}$ can be obtained by [25–27]: boldCboldCboldRboldLboldB=boldCboldRboldLboldBboldCboldRboldLboldBtrueΛ˜()boldΛ˜TboldCboldRboldLboldBtrueΛ˜1boldΛ˜TboldCboldRboldLboldB=Σ1boldΣ1T(CRLB)1boldΣ11boldΣ1T $\mathbf{C}\mathbf{C}\mathbf{R}\mathbf{L}\mathbf{B}=\mathbf{C}\mathbf{R}\mathbf{L}\mathbf{B}-{\mathbf{C}\mathbf{R}\mathbf{L}\mathbf{B}\widetilde{\boldsymbol{\Lambda }}\left({\widetilde{\boldsymbol{\Lambda }}}^{\mathrm{T}}\mathbf{C}\mathbf{R}\mathbf{L}\mathbf{B}\widetilde{\boldsymbol{\Lambda }}\right)}^{-1}{\widetilde{\boldsymbol{\Lambda }}}^{\mathrm{T}}\mathbf{C}\mathbf{R}\mathbf{L}\mathbf{B}={\boldsymbol{\Sigma }}_{1}{{\left({\boldsymbol{\Sigma }}_{1}^{T}{(\text{CRLB})}^{-1}{\boldsymbol{\Sigma }}_{1}\right)}^{-1}\boldsymbol{\Sigma }}_{1}^{\mathrm{T}}$ where trueΛ˜=boldΛ1bolduoT $\widetilde{\boldsymbol{\Lambda }}={\left[{\boldsymbol{\Lambda }}_{1}{\mathbf{u}}^{o}\right]}^{\mathrm{T}}$ and Σ1=[]I2center()1e2uxo/uzo()1e2uyo/uzo ${\boldsymbol{\Sigma }}_{1}=\left[\begin{array}{@{}c@{}}{\mathbf{I}}_{2}\\ \begin{array}{cc}-\left(1-{e}^{2}\right){\mathbf{u}}_{x}^{o}/{\mathbf{u}}_{z}^{o}& -\left(1-{e}^{2}\right){\mathbf{...…”
Section: Ccrlbmentioning
confidence: 99%