The platform will undergo maintenance on Sep 14 at about 7:45 AM EST and will be unavailable for approximately 2 hours.
2023
DOI: 10.1007/s00009-023-02304-6
|View full text |Cite
|
Sign up to set email alerts
|

Normalized Solutions for Fractional Schrödinger–Poisson System with General Nonlinearities

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2

Citation Types

0
2
0

Year Published

2024
2024
2024
2024

Publication Types

Select...
2

Relationship

0
2

Authors

Journals

citations
Cited by 2 publications
(2 citation statements)
references
References 25 publications
0
2
0
Order By: Relevance
“…Moreover, by using Pohozaev manifold and variational method, Li and Teng [15] expanded the above results to the following fractional Schrödinger-Poisson system:…”
Section: Introductionmentioning
confidence: 99%
See 1 more Smart Citation
“…Moreover, by using Pohozaev manifold and variational method, Li and Teng [15] expanded the above results to the following fractional Schrödinger-Poisson system:…”
Section: Introductionmentioning
confidence: 99%
“…Yang et al [25] used the same method to study the existence of normalized solutions to the following Kirchhoff–Schrödinger–Poisson system: {left left leftarrayarraya+b3|u|2dxΔu+ϕu=f(u)+λuarrayin3,arrayarrayΔϕ=u2arrayin3.$$ \left\{\begin{array}{lll}& -\left(a+b{\int}_{{\mathrm{\mathbb{R}}}^3}{\left|\nabla u\right|}^2\mathrm{d}x\right)\Delta u+\phi u=f(u)+\lambda u& \mathrm{in}\kern0.4em {\mathrm{\mathbb{R}}}^3,\\ {}& -\Delta \phi ={u}^2& \mathrm{in}\kern0.4em {\mathrm{\mathbb{R}}}^3.\end{array}\right. $$ Moreover, by using Pohozaev manifold and variational method, Li and Teng [15] expanded the above results to the following fractional Schrödinger–Poisson system: {left left leftarrayarray(Δ)αu+ϕu=f(u)+λuarrayin3,arrayarray(Δ)βϕ=u2arrayin3,$$ \left\{\begin{array}{lll}& {\left(-\Delta \right)}^{\alpha }u+\phi u=f(u)+\lambda u& \mathrm{in}\kern0.4em {\mathrm{\mathbb{R}}}^3,\\ {}& {\left(-\Delta \right)}^{\beta}\phi ={u}^2& \mathrm{in}\kern0.4em {\mathrm{\mathbb{R}}}^3,\end{array}\right. $$…”
Section: Introductionmentioning
confidence: 99%