2019
DOI: 10.1115/1.4045323
|View full text |Cite
|
Sign up to set email alerts
|

Nonlinear Kalman Filtering With Expensive Forward Models Via Measure Change

Abstract: Filtering is a subset of a more general probabilistic estimation scheme for estimating the unobserved parameters from the observed measurements. For nonlinear, high speed applications, the extended Kalman filter (EKF) and the unscented Kalman filter (UKF) are common estimators; however, expensive and strongly nonlinear forward models remain a challenge. In this paper, a novel Kalman filtering algorithm for nonlinear systems is developed, where the numerical approximation is achieved via a change of measure. Th… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 39 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?