2015
DOI: 10.1088/0031-9155/60/8/3237
|View full text |Cite
|
Sign up to set email alerts
|

Noninvasive reconstruction of cardiac transmembrane potentials using a kernelized extreme learning method

Abstract: Non-invasively reconstructing the cardiac transmembrane potentials (TMPs) from body surface potentials can act as a regression problem. The support vector regression (SVR) method is often used to solve the regression problem, however the computational complexity of the SVR training algorithm is usually intensive. In this paper, another learning algorithm, termed as extreme learning machine (ELM), is proposed to reconstruct the cardiac transmembrane potentials. Moreover, ELM can be extended to single-hidden lay… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
1
0

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
(1 citation statement)
references
References 36 publications
0
1
0
Order By: Relevance
“…]: print('PRESTO 1: ', mean_confidence_interval_corrected(rocs_presto1)) print('PRESTO 2: ', mean_confidence_interval_corrected(rocs_presto2)) print('TLR: ', mean_confidence_interval_corrected(rocs_TLR)) print('PRESTO 1 acc: ', mean_confidence_interval_corrected(rocs_presto 1_acc)) print('PRESTO 2 acc: ', mean_confidence_interval_corrected(rocs_presto 2_acc)) print('TLR acc: ', mean_confidence_interval_corrected(rocs_TLR_acc)) presto1_conf = mean_confidence_interval_corrected(rocs_presto1) presto2_conf = mean_confidence_interval_corrected(rocs_presto2) TLR_conf = mean_confidence_interval_corrected(rocs_TLR) presto1_acc_conf = mean_confidence_interval_corrected(rocs_presto1_acc ) presto2_acc_conf = mean_confidence_interval_corrected(rocs_presto2_acc ) TLR_acc_conf = mean_confidence_interval_corrected(rocs_TLR_acc) PRESTO 1: (0.5672395833333334, 0.42978712900171223, 0.704692037664954 5) PRESTO 2: (0.5802083333333333, 0.4371469845278454, 0.7232696821388213 ) TLR: (0.6174131944444444, 0.49840496303296705, 0.7364214258559217) PRESTO 1 acc: (0.5696354166666667, 0.42548465436756233, 0.71378617896 57711) PRESTO 2 acc: (0.5610069444444444, 0.4138755754414542, 0.708138313447 4346) TLR acc: (0.6144444444444445, 0.49644129927028835, 0.7324475896186006 )In[126]: print('LR: ', mean_confidence_interval(rocs_lr)) print('RF: ', mean_confidence_interval(rocs_rf)) print('ert: ', mean_confidence_interval(rocs_ert)) print('SVC: ', mean_confidence_interval(rocs_svc)) print('GB: ', mean_confidence_interval(rocs_gb)) print('LR_noreg: ', mean_confidence_interval(rocs_lr_noreg)) lr_conf = mean_confidence_interval(rocs_lr) rf_conf = mean_confidence_interval(rocs_rf) ert_conf = mean_confidence_interval(rocs_ert) svc_conf = mean_confidence_interval(rocs_svc) gb_conf = mean_confidence_interval(rocs_gb) lr_noreg_conf = mean_confidence_interval(rocs_lr_noreg) LR: (0.7417534722222223, 0.7176171797358428, 0.7658897647086018) RF: (0.7518402777777777, 0.7259682375983111, 0.7777123179572444) ert: (0.7723090277777778, 0.7480912723541336, 0.7965267832014219) SVC: (0.5312152777777777, 0.49851098206738326, 0.5639195734881721) GB: (0.6783680555555555, 0.6473385050355935, 0.7093976060755174) LR_noreg: (0.6988194444444444, 0.6734754140167117, 0.7241634748721771 )In[127]: print('LR: ', mean_confidence_interval_corrected(rocs_lr)) print('RF: ', mean_confidence_interval_corrected(rocs_rf)) print('ert: ', mean_confidence_interval_corrected(rocs_ert)) print('SVC: ', mean_confidence_interval_corrected(rocs_svc)) print('GB: ', mean_confidence_interval_corrected(rocs_gb)) print('LR_noreg: ', mean_confidence_interval_corrected(rocs_lr_noreg))lr_conf = mean_confidence_interval_corrected(rocs_lr) rf_conf = mean_confidence_interval_corrected(rocs_rf) ert_conf = mean_confidence_interval_corrected(rocs_ert) svc_conf = mean_confidence_interval_corrected(rocs_svc) gb_conf = mean_confidence_interval_corrected(rocs_gb) lr_noreg_conf = mean_confidence_interval_corrected(rocs_lr_noreg) LR: (0.7417534722222223, 0.6254420279909381, 0.8580649164535066) RF: (0.7518402777777777, 0.6271643624448107, 0.8765161931107448) ert: (0.7723090277777778, 0.6556050182057345, 0.8890130373498211) SVC: (0.5312152777777777, 0.37361510497619416, 0.6888154505793611) GB: (0.6783680555555555, 0.5288383862055075, 0.8278977249056034) LR_noreg: (0.6988194444444444, 0.5766879785884229, 0.820950910300466) In [128]: # t-test corregido, devuelve media de la diferencia entre las dos mues tras y p-valor t_test_corregido(rocs_ert, rocs_svc) Out[128]: (0.24109375, 0.0028584540146056993) In [129]: t_test_corregido(rocs_ert, rocs_TLR) Out[129]: (0.15489583333333334, 0.022011844785024097) In [130]: ## CURVAS #Curvas roc. Comparación de modelosplt.figure(figsize=(15,10)) plt.xlim([0.0, 1.0]) plt.ylim([0.0, 1.0]) model_names = ['ert', 'rf', 'lr', 'lr_noreg', 'gb', 'svc'] colors = ['cornflowerblue', 'limegreen', 'indianred', 'pink', 'black', 'orange'] model_zoo =...…”
mentioning
confidence: 99%
“…]: print('PRESTO 1: ', mean_confidence_interval_corrected(rocs_presto1)) print('PRESTO 2: ', mean_confidence_interval_corrected(rocs_presto2)) print('TLR: ', mean_confidence_interval_corrected(rocs_TLR)) print('PRESTO 1 acc: ', mean_confidence_interval_corrected(rocs_presto 1_acc)) print('PRESTO 2 acc: ', mean_confidence_interval_corrected(rocs_presto 2_acc)) print('TLR acc: ', mean_confidence_interval_corrected(rocs_TLR_acc)) presto1_conf = mean_confidence_interval_corrected(rocs_presto1) presto2_conf = mean_confidence_interval_corrected(rocs_presto2) TLR_conf = mean_confidence_interval_corrected(rocs_TLR) presto1_acc_conf = mean_confidence_interval_corrected(rocs_presto1_acc ) presto2_acc_conf = mean_confidence_interval_corrected(rocs_presto2_acc ) TLR_acc_conf = mean_confidence_interval_corrected(rocs_TLR_acc) PRESTO 1: (0.5672395833333334, 0.42978712900171223, 0.704692037664954 5) PRESTO 2: (0.5802083333333333, 0.4371469845278454, 0.7232696821388213 ) TLR: (0.6174131944444444, 0.49840496303296705, 0.7364214258559217) PRESTO 1 acc: (0.5696354166666667, 0.42548465436756233, 0.71378617896 57711) PRESTO 2 acc: (0.5610069444444444, 0.4138755754414542, 0.708138313447 4346) TLR acc: (0.6144444444444445, 0.49644129927028835, 0.7324475896186006 )In[126]: print('LR: ', mean_confidence_interval(rocs_lr)) print('RF: ', mean_confidence_interval(rocs_rf)) print('ert: ', mean_confidence_interval(rocs_ert)) print('SVC: ', mean_confidence_interval(rocs_svc)) print('GB: ', mean_confidence_interval(rocs_gb)) print('LR_noreg: ', mean_confidence_interval(rocs_lr_noreg)) lr_conf = mean_confidence_interval(rocs_lr) rf_conf = mean_confidence_interval(rocs_rf) ert_conf = mean_confidence_interval(rocs_ert) svc_conf = mean_confidence_interval(rocs_svc) gb_conf = mean_confidence_interval(rocs_gb) lr_noreg_conf = mean_confidence_interval(rocs_lr_noreg) LR: (0.7417534722222223, 0.7176171797358428, 0.7658897647086018) RF: (0.7518402777777777, 0.7259682375983111, 0.7777123179572444) ert: (0.7723090277777778, 0.7480912723541336, 0.7965267832014219) SVC: (0.5312152777777777, 0.49851098206738326, 0.5639195734881721) GB: (0.6783680555555555, 0.6473385050355935, 0.7093976060755174) LR_noreg: (0.6988194444444444, 0.6734754140167117, 0.7241634748721771 )In[127]: print('LR: ', mean_confidence_interval_corrected(rocs_lr)) print('RF: ', mean_confidence_interval_corrected(rocs_rf)) print('ert: ', mean_confidence_interval_corrected(rocs_ert)) print('SVC: ', mean_confidence_interval_corrected(rocs_svc)) print('GB: ', mean_confidence_interval_corrected(rocs_gb)) print('LR_noreg: ', mean_confidence_interval_corrected(rocs_lr_noreg))lr_conf = mean_confidence_interval_corrected(rocs_lr) rf_conf = mean_confidence_interval_corrected(rocs_rf) ert_conf = mean_confidence_interval_corrected(rocs_ert) svc_conf = mean_confidence_interval_corrected(rocs_svc) gb_conf = mean_confidence_interval_corrected(rocs_gb) lr_noreg_conf = mean_confidence_interval_corrected(rocs_lr_noreg) LR: (0.7417534722222223, 0.6254420279909381, 0.8580649164535066) RF: (0.7518402777777777, 0.6271643624448107, 0.8765161931107448) ert: (0.7723090277777778, 0.6556050182057345, 0.8890130373498211) SVC: (0.5312152777777777, 0.37361510497619416, 0.6888154505793611) GB: (0.6783680555555555, 0.5288383862055075, 0.8278977249056034) LR_noreg: (0.6988194444444444, 0.5766879785884229, 0.820950910300466) In [128]: # t-test corregido, devuelve media de la diferencia entre las dos mues tras y p-valor t_test_corregido(rocs_ert, rocs_svc) Out[128]: (0.24109375, 0.0028584540146056993) In [129]: t_test_corregido(rocs_ert, rocs_TLR) Out[129]: (0.15489583333333334, 0.022011844785024097) In [130]: ## CURVAS #Curvas roc. Comparación de modelosplt.figure(figsize=(15,10)) plt.xlim([0.0, 1.0]) plt.ylim([0.0, 1.0]) model_names = ['ert', 'rf', 'lr', 'lr_noreg', 'gb', 'svc'] colors = ['cornflowerblue', 'limegreen', 'indianred', 'pink', 'black', 'orange'] model_zoo =...…”
mentioning
confidence: 99%