Abstract:An almost Moore $(d,k)$-digraph is a regular digraph of degree $d>1$, diameter $k>1$ and order $N(d,k)=d+d^2+\cdots +d^k$. So far, their existence has only been shown for $k=2$, whilst it is known that there are no such digraphs for $k=3$, $4$ and for $d=2$, $3$ when $k\geq 3$. Furthermore, under certain assumptions, the nonexistence for the remaining cases has also been shown. In this paper, we prove that $(4,k)$ and $(5,k)$-almost Moore digraphs with self-repeats do not exist for $k\geq 5$.
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.