Using the Berezin-Marinov pseudoclassical formulation of spin particle we
propose a classical model of spin noncommutativity. In the nonrelativistic
case, the Poisson brackets between the coordinates are proportional to the spin
angular momentum. The quantization of the model leads to the noncommutativity
with mixed spacial and spin degrees of freedom. A modified Pauli equation,
describing a spin half particle in an external e.m. field is obtained. We show
that nonlocality caused by the spin noncommutativity depends on the spin of the
particle; for spin zero, nonlocality does not appear, for spin half, $\Delta
x\Delta y\geq\theta^{2}/2$, etc. In the relativistic case the noncommutative
Dirac equation was derived. For that we introduce a new star product. The
advantage of our model is that in spite of the presence of noncommutativity and
nonlocality, it is Lorentz invariant. Also, in the quasiclassical approximation
it gives noncommutativity with a nilpotent parameter.Comment: 11 pages, references adda