2017
DOI: 10.1016/j.elecom.2017.03.016
|View full text |Cite
|
Sign up to set email alerts
|

Non-successive degradation in bulk-type all-solid-state lithium battery with rigid interfacial contact

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
33
0
1

Year Published

2017
2017
2022
2022

Publication Types

Select...
7

Relationship

0
7

Authors

Journals

citations
Cited by 60 publications
(34 citation statements)
references
References 24 publications
0
33
0
1
Order By: Relevance
“…[30] The side reactions between the SSE and the cathode or the anode may produce some interphases (impurities) or ions exchange at the interfaces, which causes mismatch between the crystal lattices, [94][95][96] and even form cracks in the battery. [97][98][99][100] Typically, the interphases formed in either liquid or solid-state battery, are ionic conductors but electrical insultors. [33,83] In liquid-electrolyte batteries, an SEI will inhibit direct contact between the liquid electrolyte and electrode materials, and prevent further side reactions.…”
Section: Interfaces and Interphases Formation In Rechargeable Batteriesmentioning
confidence: 99%
“…[30] The side reactions between the SSE and the cathode or the anode may produce some interphases (impurities) or ions exchange at the interfaces, which causes mismatch between the crystal lattices, [94][95][96] and even form cracks in the battery. [97][98][99][100] Typically, the interphases formed in either liquid or solid-state battery, are ionic conductors but electrical insultors. [33,83] In liquid-electrolyte batteries, an SEI will inhibit direct contact between the liquid electrolyte and electrode materials, and prevent further side reactions.…”
Section: Interfaces and Interphases Formation In Rechargeable Batteriesmentioning
confidence: 99%
“…Key words: inorganic solid state electrolyte; composite electrolyte; interfacial wettability; interfacial impendence; interface modification; review 全固态锂离子电池在解决传统锂离子电池使用 温度范围窄、能量密度低、使用寿命短、安全等级 低等关键问题的同时, 有望大幅降低电池制造成 本、有效改善电池的安全性问题, 在动力电池和大 容量新型储能方面具有广阔的应用前景 [1][2][3][4][5][6][7][8] 。 固体电解质作为全固态锂离子电池的重要组成 部分, 其性能的优劣很大程度上制约着全固态电池 实际应用的发展 [9][10][11][12] 。固体电解质分为无机固体电 解质和聚合物固体电解质。相对于聚合物固体电解 质容易结晶、适用温度范围窄以及力学性能提升难 的问题, 无机固体电解质能在宽的温度范围内保持 良好的化学稳定性、电化学稳定性、力学性能和更 高的安全特性 [13][14][15][16] 。图 1 为室温下, 不同结构类型 无机固体电解质的离子电导率, 从图中可以看出类 Lisicon 型以及 Argyrodite 型的固体电解质具有与液 体电解质相近的电导率 [17] , 但这些含硫化合物存在 对水分比较敏感、化学稳定性欠佳、易挥发、难以合 成所需计量化合物 [18] 和电压窗口窄 [19] 等问题, 在全 固态电池的应用中受到较大的限制。具有高电导率 的石榴石型电解质, 如 Li 7 La 3 Zr 2 O 12 [20][21][22][23] (LLZO)以 及元素掺杂后的 LLZO 室温电导率可达 10 -3 S·cm -1 数量级 [24] , 与金属 Li 有相对稳定的界面, 且在空气 中也有着良好的化学稳定性, 因而石榴石型电解质 在全固态电池研究和开发中有着良好的应用前景。 目前, 电极与固体电解质间的高界面阻抗使得全固 态锂离子电池的容量、倍率和循环性能都不理想。 图 1 室温下不同类型固体电解质的电导率 [17] Fig. 1 Conductivity of different types of solid electrolytes at room temperature [17] 全固态电池体系的界面主要包括正极/固体电解质 界面和负极/固体电解质界面 [25][26][27][28][29][30] , 本文以正极与 LLZO 石榴石型固体电解质界面为研究对象, 从正 极/石榴石型固体电解质的界面特性、界面研究中存 在的问题、以及界面改性等方面进行概述。 1 正极/石榴石型固体电解质界面特 [31] , 导 致电解质/正极接触面积较小, 并在界面处形成一定 的结构缺陷(如: 空隙 [32] 、 裂纹 [33] ), 制约了锂离子在 界面上的传输速率, 形成了高的界面阻抗。 另外, 电 池在充放电循环过程中, 电极材料与固体电解质自 身结构的变化和界面区域第三相的形成, 导致界面 处产生一定的结构应力, 随着循环的进行, 应力累 加使界面断裂、 分离, 最终导致全固态电池失效 [34][35] …”
unclassified
“…[1][2][3][4][5][6] However,the penetration of Li dendrites through the separator in batteries,w hich raises safety concerns and often results in battery performance decay,h ave limited the use of Li metal anodes for decades.R ecently,e xtensive studies of Li metal composites and modified separators to suppress or delay Li dendrite growth have been reported. [11,15,17,22,[34][35][36][37][38][39][40][41][42][43][44][45] Our recent progress has significantly decreased the garnet solid electrolyte/Li interface resistance by applying at hin metal interlayer,s uch as Al, Si, and Ge. [20,21,23] Among the different types of solid-state electrolytes,t he Li 7 La 3 Zr 2 O 12 (LLZO) garnet-type solid-state electrolyte is al eading candidate for Li metal batteries,due to its high ionic conductivity (10 À3 -10 À4 Scm) and chemical stability against Li metal.…”
mentioning
confidence: 99%
“…[20,21,23] Among the different types of solid-state electrolytes,t he Li 7 La 3 Zr 2 O 12 (LLZO) garnet-type solid-state electrolyte is al eading candidate for Li metal batteries,due to its high ionic conductivity (10 À3 -10 À4 Scm) and chemical stability against Li metal. [11,15,17,22,[34][35][36][37][38][39][40][41][42][43][44][45] Our recent progress has significantly decreased the garnet solid electrolyte/Li interface resistance by applying at hin metal interlayer,s uch as Al, Si, and Ge. [11,15,17,22,[34][35][36][37][38][39][40][41][42][43][44][45] Our recent progress has significantly decreased the garnet solid electrolyte/Li interface resistance by applying at hin metal interlayer,s uch as Al, Si, and Ge.…”
mentioning
confidence: 99%
See 1 more Smart Citation