Abstract. Given a smooth curve defined over a field k that admits a non-singular plane model over k, a fixed separable closure of k, it does not necessarily have a non-singular plane model defined over the field k. We determine under which conditions this happens and we show an example of such phenomenon: a curve defined over k admitting plane models but none defined over k. Now, even assuming that such a smooth plane model exists, we wonder about the existence of non-singular plane models over k for its twists. We characterize twists possessing such models and we also show an example of a twist not admitting any non-singular plane model over k. As a consequence, we get explicit equations for a non-trivial Brauer-Severi surface. Finally, we obtain a theoretical result to describe all the twists of smooth plane curves with cyclic automorphism group having a model defined over k whose automorphism group is generated by a diagonal matrix.