2009
DOI: 10.1016/j.jedc.2008.08.008
|View full text |Cite
|
Sign up to set email alerts
|

Non-constant discounting in finite horizon: The free terminal time case

Abstract: This paper derives the HJB (Hamilton-Jacobi-Bellman) equation for sophisticated agents in a finite horizon dynamic optimization problem with non-constant discounting in a continuous setting, by using a dynamic programming approach. A simple example is used in order to illustrate the applicability of this HJB equation, by suggesting a method for constructing the subgame perfect equilibrium solution to the problem.Conditions for the observational equivalence with an associated problem with constant discounting a… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1
1

Citation Types

1
32
0
1

Year Published

2009
2009
2021
2021

Publication Types

Select...
6
2

Relationship

1
7

Authors

Journals

citations
Cited by 39 publications
(34 citation statements)
references
References 12 publications
1
32
0
1
Order By: Relevance
“…If we look for a time‐consistent decision rule under no commitment (the agent is sophisticated), we must analyze the game theoretic framework in which the final time is decided by the final agent, who is the one to decide whether or not to stop. We can adapt the proof in Marín‐Solano and Navas 12 for the case of non‐constant discounting to our framework. Since T * is optimum from the perspective of the T * ‐agent, if the optimal decision for the ( T * + ε)‐agent, ε>0, is to stop, then from the optimality of T * we get F ( x ( T * ), T * )⩾ V ( x ( T * ), T * ), where V denotes the value function of the T * ‐agent if the terminal time is T * + ε.…”
Section: Terminal Time As a Decision Variablementioning
confidence: 99%
“…If we look for a time‐consistent decision rule under no commitment (the agent is sophisticated), we must analyze the game theoretic framework in which the final time is decided by the final agent, who is the one to decide whether or not to stop. We can adapt the proof in Marín‐Solano and Navas 12 for the case of non‐constant discounting to our framework. Since T * is optimum from the perspective of the T * ‐agent, if the optimal decision for the ( T * + ε)‐agent, ε>0, is to stop, then from the optimality of T * we get F ( x ( T * ), T * )⩾ V ( x ( T * ), T * ), where V denotes the value function of the T * ‐agent if the terminal time is T * + ε.…”
Section: Terminal Time As a Decision Variablementioning
confidence: 99%
“…Pollak (1968) gave the right solution to the Strotz problem for both naive and sophisticated agents under a logarithmic function. Barro (1999), Karp (2007), Ekeland & Lazrak (2010), Ekeland & Pirvu (2008), Marin-Solano & Navas (2009, Ekeland et al (2012) further considered time-inconsistent preferences problems in different situations. Recently, there has been renewed interest in time-consistent mean-variance portfolio selection problem, see, for example, Björk & Murgoci (2009), Basak & Chabakauri (2010, Kryger & Steffensen (2010), Wang & Forsyth (2011), Czichowsky (2013, Björk et al (2014), Kronborg & Steffensen (2015).…”
Section: Introductionmentioning
confidence: 99%
“…Использование двух различных ставок дисконтирования доходов и расходов для стратегической оценки эффективности проекта. Российское предпринимательство, 16(13), 2053-2066.doi: 10.18334/rp.16.13.486 2055 Необходимо отметить, что дифференциация ставок дисконтирования не является общеупотребительной методологией (Агеев, 2011;Артемьев, Гергерт, Пономарева, 2013;Володин, 2013;Дорошенко, Авилова, 2007;Замбржицкая, Самохин, 2014;Золочевская, Кривошеева, 2014;Попова, 2013;Турыгин, 2007;Успенская, 2013;Черемушкин, 2013;Ahern, Leavy, Byrne, 2014;Bredillet, Tywoniak, Dwivedula, 2015;Caputo, 2013;Freeman, 2009;Grinblatt, Liu, 2008;Klein, Biesenthal, Dehlin, 2015;Marín-Solano, Navas, 2009;Price, 2011;Shimizu, Park, Choi, 2014;Singh, McAllister, Rinks, Jiang, 2010;Too, Weaver, 2014).…”
Section: ключевые слова: бюджет проекта две ставки дисконтирования unclassified