Individual variation in cognition is being increasingly recognized as an important evolutionary force but contradictory results so far hamper a general understanding of consistency and association with other behaviors. Partly, this might be caused by external factors imposed by the design. Stress, for example, is known to influence cognition, with mild stress improving learning abilities, while strong or chronic stress impairs them. Also, there might be intraspecific variation in how stressful a given situation is perceived. We investigated two personality traits (stress coping and voluntary exploration), spatial learning with two mazes, and problem-solving in low- and high-stress tests with a group of 30 female wild mice (Mus musculus domesticus). For each test, perceived stress was assessed by measuring body temperature change with infrared thermography, a new non-invasive method that measures skin temperature as a proxy of changes in the sympathetic system activity. While spatial learning and problem-solving were found to be repeatable traits in mice in earlier studies, none of the learning measures were significantly repeatable between the two stress conditions in our study, indicating that the stress level impacts learning. We found correlations between learning and personality traits; however, they differed between the two stress conditions and between the cognitive tasks, suggesting that different mechanisms underlie these processes. These findings could explain some of the contradictory findings in the literature and argue for very careful design of cognitive test setups to draw evolutionary implications.